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Abstract

Next-generation exascale systems, those capable of performing a quintillion (1018)

operations per second, are expected to be delivered in the next 8-10 years. These

systems, which will be 1,000 times faster than current systems, will be of unprece-

dented scale. As these systems continue to grow in size, faults will become increas-

ingly common, even over the course of small calculations. Therefore, issues such as

fault tolerance and reliability will limit application scalability. Current techniques

to ensure progress across faults like checkpoint/restart, the dominant fault tolerance

mechanism for the last 25 years, are increasingly problematic at the scales of future

systems due to their excessive overheads. In this work, we evaluate a number of

techniques to decrease the overhead of checkpoint/restart and keep this method vi-

able for future exascale systems. More specifically, this work evaluates state-machine

replication to dramatically increase the checkpoint interval (the time between suc-

cessive checkpoints) and hash-based, probabilistic incremental checkpointing using

vii



graphics processing units to decrease the checkpoint commit time (the time to save

one checkpoint). Using a combination of empirical analysis, modeling, and sim-

ulation, we study the costs and benefits of these approaches on a wide range of

parameters. These results, which cover of number of high-performance computing

capability workloads, different failure distributions, hardware mean time to failures,

and I/O bandwidths, show the potential benefits of these techniques for meeting the

reliability demands of future exascale platforms.
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Chapter 1

Introduction

1.1 Overview

Today’s extreme-scale parallel supercomputers experience outages from a number of

sources, including failed hardware components, software bugs, and power disruptions.

Million-core machines for exascale computing will have so many parts that faults will

be frequent. The system-wide Mean Time to Interrupt (MTTI) will become so small

that more than 50% of an application’s total execution time will be spent writing

checkpoints and recovering from failures [6]. The more failures that occur during the

execution of an application, the longer it will take to finish its work.

In this work, we propose a number of techniques to enhance traditional check-

point/restart so that it remains a viable option on future extreme-scale systems.

These techniques fall into two broad categories: those that reduce the frequency at

which checkpoints are taken, and those that reduce the overhead of taking one check-

point. Note that these methods are not mutually exclusive and can collectively be

used to reduce the overhead of checkpoint/restart. To reduce the frequency of check-

points, we investigate redundant computing, which uses a state-machine replication
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scheme as well as a consistency protocol to ensure consistent state within replicas.

To reduce the overhead of one checkpoint, we investigate incremental checkpointing

and the use of computation accelerators such as graphics processing units (GPU) to

speed checkpoint time. Our thesis is that state-machine replication and GPU-based

incremental checkpointing can keep traditional rollback recovery as a viable option

for exascale systems.

The remainder of this chapter is organized as follows. The following section pro-

vides a summary of the reliability challenges for exascale systems, offering a look at

the increasing component counts for current and future systems and its implications

for reliability. In Section 1.3 we briefly summarize the current practice for main-

stream HPC fault-tolerance, rollback recovery, and the scalability challenges in this

method for exascale systems. In Section 1.4 we offer a summary of state-machine

replication, a common method used in distributed and mission critical systems to

provide fault tolerance. Section 1.5 offers a solution to reduce the amount of state

saved during a checkpoint: hash-based, incremental checkpointing. A summary of

the main contributions of this work is provided in Section 1.6. We conclude the

chapter with a roadmap for the remainder of this document in Section 1.7.

1.2 Reliability Challenges for Extreme-Scale Sys-

tems

Concern is rising in the High-Performance Computing (HPC) community on the

reliability requirements of proposed and future large-scale systems. In the past,

increasing numbers of processing elements have accounted for a significant portion of

increased system capabilities. This trend of increased component count is expected

to continue in proposed exascale systems. In this section, we examine the impact of
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this on the reliability of these systems.

Increased system size for these future systems leads to systems with a very small

mean time between failure (MTBF). The MTBF of a system is the mean time be-

tween two successive failures on the considered system. The MTBF of a system is

equal to the sum of the mean time to interrupt (MTTI) and the mean time to repair

(MTTR). For a system of identical components, the MTBF of the system (Θsystem)

is inversely proportional to the number of sockets (N) and is defined as:

Θsystem =
Θsocket

N
(1.1)

where Θsocket is the MTBF of a socket in the system. Reliability statistics from a

number of top supercomputing centers [6–11, 17] also show that the MTBF of HPC

systems shrinks proportionally with the number CPU sockets in the system.

Examining historical socket count data from the Top500 [1] supercomputer site,

we see that socket counts have been steadily increasing. Figure 1.1 shows the socket

count statistics for the five fastest machines in the world since 1993. From this

figure, we see the progression of increasing socket count with time. Three future

machines included in this figure and announced to be released in 2010 and 2011

continue this progression of increasing socket counts: Cielo [3] with 18, 000 sockets,

ACS BlueWaters [2] with nearly 40, 000 sockets, and Sequoia [4] with 125, 000 sockets.

This steady increase of socket counts for the top capability-class machines, coupled

with the fact that individual CPU reliability has stayed nearly constant in the past

10 years [18], suggests that we will soon reach a tipping point where the MTBF will

be so low that the application will be unable to make forward progress.

Figure 1.2 show this same data from 2001, along with the three aforementioned

proposed systems and a proposed “Aggressive”proposed exascale architecture [5],
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Figure 1.1: Socket counts for the five fastest machines topping the Top500 [1] list
for the past two decades. Also included are two proposed systems due to become
operational in 2010 and 2011, ASC BlueWaters [2], Cielo [3], and Sequoia [4].

an upper-bound “strawman” architecture for a 2018 exascale machine. The shaded

region in this plot represents the range of possible socket counts fitting the past data

to a line and extrapolating out to 2018. From this we see the possibility of a jump

in socket count for future extreme-scale machines. The reason for this possible jump

is related to power and memory bandwidth constraints on these systems [5]. All this

suggests that socket counts will increase to an unprecedented level.

Finally, Figure 1.3 illustrates the impact of system MTBF for machines at scale

using Equation 1.1. Recent studies [6–11] have placed the socket MTBF for current

systems to be between 5 and 25 years. It is important to note that it is not clear these

current socket MTBF’s will increase; the CPU market is typically not driven by the

HPC community and current MTBFs are adequate for the consumer and enterprise

markets. In this figure, we see that at the scale of next-generation large scale ma-

chines, the system MTBF will decrease to an hour and in some cases minutes. This
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Figure 1.2: Socket counts for the five fastest machines topping the Top500 [1] list
from 2001 to 2010. Also included are upcoming systems and a proposed “Aggressive”
exascale system [5]. The shaded region in the figure shows the range of socket counts
using past data for a line fit.

is important as the rapidly shrinking MTBFs typically impact application progress

and scalability. In fact, if the MTBF is less than the mean time to repair (MTTR),

no progress can be made at all.

1.3 Rollback Recovery

1.3.1 Overview

A common method to allow an application to continue in the presence of faults,

checkpoint/restart saves application state at regular intervals and restarts the ap-

plication from the most recent successful checkpoint after a fault occurs. In this

section we summarize the scalability challenges for traditional rollback recovery for
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Figure 1.3: System MTBF values expected from large-scale exascale systems. Cur-
rent studies [6–11] place the node MTBF somewhere between 5 and 25 years, which
is expected to continue in the future. Next-generation systems are expected to see
multiple faults per hour.

large-scale systems.

In rollback recovery, once a failure has been observed the current execution is

stopped and execution is restarted from the last known good snapshot of the appli-

cation’s state. These last known good state snapshots are called checkpoints. To

avoid rolling back execution of the application to the beginning, checkpoints are

saved repeatedly throughout the lifetime of the application. Rollback recovery has

a number of costs associated with it, most notably the time to save a checkpoint

safely to stable storage. Performance is also affected by how frequently checkpoints

are taken, but finding an optimal checkpoint frequency can sometimes be difficult.

Checkpointing often ensures that little work is lost at the expense of spending

an increasing amount of time computing checkpoints and thereby halting applica-

tion forward progress. Checkpointing rarely ensures high application efficiency and

6



Chapter 1. Introduction

forward progress at the expense of restarting from a point far in the past on failure,

recomputing a large amount of work.

1.3.2 Scalability of Rollback Recovery

The use of coordinated checkpoint/restart as the primary HPC fault tolerance tech-

nique relies on two key assumptions that may not be true in future exascale systems:

1. Application state can be saved and restored much more quickly than

a system’s mean time to interrupt (MTTI). Upcoming systems are pro-

jected to have several orders of magnitude more components than current sys-

tems and suffer faults much more often (see Figure 1.2). In addition, the

increasing disparity between available I/O bandwidth and memory density

continues to increase the time it takes to write a checkpoint. Both of these

are leading to exascale systems with MTTIs much less than the time it takes

to write a checkpoint.

2. Faults that result in Byzantine-type failures are very rare. Current

systems are already beginning to suffer from faults that lead to incorrect ap-

plication results instead of crash failures [19], for example undetected DRAM

errors in application memory. Because of the dramatic increase in component

count in exascale systems, such faults will become increasingly common.

Table 1.1 shows the LINPACK Rmax performance as well as estimated or mea-

sured checkpoint times for a number of machines in the Top500 [1] over the past

10 years. From this table we observe that, historically, the fastest machines in the

Top500 take 20 to 30 minutes to perform a checkpoint. This stability over time of

checkpoint time is due to a number of reasons: the balance between node memory

density and I/O bandwidth to stable storage and the organization of the I/O system
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Year System LINPACK Performance Checkpoint (δ)
(TFLOPS) (min.)

2010 Jaguar 1,759 26
2009 RoadRunner 1,105 ∼20
2008 BlueGene/L 500 20
2007 Red Storm 100 ∼20
2006 Zeus 11 26
1999 ASCI Red 2.3 ∼20

Table 1.1: Historical data of LINPACK and checkpoint performance for a number
for machines in the top500 [14–16]. The RoadRunner and Red Storm checkpoint
times are derived from memory size and parallel file I/O performance assuming 80%
of memory must be written in the checkpoint.

remains relatively identical in the systems above. This I/O subsystem organization

is expected to remain in future large-scale systems.

Thus, from Table 1.1 we see that the time to take a checkpoint, around 20 to 30

minutes, plus the time to perform a restart, also 20 to 30 minutes, will take a total

between 40 to 60 minutes. Referring back to Figure 1.3, we see that at the expected

scale, the predicted reliability of an exascale machine [5] will be approximately an

hour or less. Therefore, checkpoint/restart will be unable to make progress as most

of the time will be spent writing checkpoints, recovering from faults reading restart

files, and performing rework from the last checkpoint.

1.4 State-Machine Replication

The first technique we study for addressing these resiliency challenges for exascale

is replication. Process-pair fault tolerance [20, 21], also referred to as state ma-

chine replication [22], is a well-known technique for tolerating faults in large-scale

distributed and mission-critical systems. In this technique, a process’s state and
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computation are replicated across redundant hardware nodes. Replication allows

systems to tolerate crash failures resulting from system faults; in particular, a failed

process’s replicas handle its responsibilities until it can be restarted from an existing

replica on new or repaired hardware. Though costly in terms of hardware require-

ments, at least doubling the number of nodes required, it allows a computing system

to continue to execute unimpeded in demanding environments with frequent failures.

In addition, variants of this technique can also be used to handle faults that do not

crash a node but instead cause it to yield incorrect results [23].

Replication has not traditionally been used in high performance computing sys-

tems, and only examined in a very limited sense, primarily due to its cost [24].

Instead, HPC systems have primarily relied on a combination of the rollback recov-

ery techniques described in Section 1.3 and a number of fine-grained hardware error

detection and correction techniques to allow large parallel applications to scale to

over a petaflop of sustained performance.

We study the use of replication to supplement checkpoint/restart and extend the

validity of its underlying assumptions to exascale systems. In particular, replication

could be used to increase the effective system MTTI by allowing applications to

continue executing as long as one replica of every process remains alive. This would

allow applications to reduce the frequency with which they write checkpoints and in-

crease the time available to write checkpoints to stable storage. Similarly, replication

could be used to detect faults that silently corrupt application state by comparing

replica state periodically (e.g. at checkpoint time). This would allow applications

to detect the effects of such faults and recover to a previous checkpoint instead of

wasting cycles computing a worthless results.

9
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1.5 Hash-Based Incremental Checkpointing

The second technique we study to reduce the overhead of checkpoint/restart is hash-

based incremental checkpointing. This variant of incremental checkpointing uses

secure hashing to reduce checkpoint sizes by saving only the application state that

has changed in the checkpoint interval.

As stated previously, the act of saving checkpoints, referred to as committing

checkpoints, adds overheads to the application’s running time. This overhead is due

to the time it takes to copy the process state (which in some cases could be multi-

gigabytes in size) to stable storage and possibly network bandwidth as thousands to

hundreds of thousands or more processors would need to write their state over the

network.

One known optimization to reduce the amount that needs to be saved is incre-

mental checkpointing. Typically, this technique involves using the operating systems

page protection mechanism to determine which pages have been written to, termed

dirty, since the last checkpoint has been saved. Upon restart, the state restored is

the original checkpoint with all the incremental differences applied in order.

One drawback to incremental checkpointing is that it operates at the granularity

of the operating system page size. Therefore if just one bit on a page has changed,

the entire page must be checkpointed. In fact, if the page is written with identical

values it is still marked as dirty and must again be checkpointed. This problem is

further compounded by the increasing maximum page sizes of modern processors

and the increased performance for HPC applications on these larger page sizes.

To address this drawback this work investigates a hybrid incremental checkpoint-

ing solution that uses both the OS page protection mechanism and a hashing scheme

to determine which locations within a page have changed. To address this we investi-
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gate the use of GPUs to offload the hash computation. This approach has previously

been proposed [25,26], but dismissed as being too computationally expensive [27,28].

1.6 Contributions

This work makes several important contributions in the field of fault-tolerance for

exascale HPC systems. These include:

• A model to determine the expected number of failures absorbed, and corre-

sponding MTTI increase, for an application using state-machine replication;

• An MPI-based implementation of application transparent state-machine repli-

cation outlining the consistency model required to meet MPI semantics;

• A GPU-assisted incremental checkpointing library that can determine the min-

imal state change in an application; and

• An evaluation of these techniques using a number of important HPC workloads,

with guidance on the viability of checkpoint/restart for future extreme-scale

systems.

A summary of these contributions is provided below with more details following

in subsequent chapters.

1.6.1 Modeling Replication

We develop a model for state-machine replication using the the birthday problem.

The birthday problem [29–32], sometimes referred to as the birthday paradox, is

a common problem in probability theory. This model allows us to formulate the
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expected number of faults a replicated system can sustain before the application sees

an interrupt.

1.6.2 rMPI: A Transparent MPI Replication Library

We develop a portable, transparent replication library called rMPI. This library uti-

lizes the MPI profiling layer [33] to enable redundant computation for MPI applica-

tions. In this work we detail the design of this library and a number of the protocols

used to keep state consistent across the replicas. In addition, we directly quantify the

cost of the rMPI library on a range of micro-benchmarks and real-world, large-scale

applications.

1.6.3 Hash-Based Incremental-Checkpointing using GPUs

We develop a hybrid incremental checkpointing solution that uses both OS page

protection mechanisms and a hash mechanism to determine which locations within

a page have changed. This allows us, with no knowledge of the application, to

determine the minimal amount of changed state in a checkpoint interval. In addition,

we use graphics accelerators to perform the hashing and evaluate the advantages of

using these GPU’s over CPU’s for a number of hashing algorithms.

1.6.4 Analysis of Checkpoint/Restart Viability for Extreme-

Scale Systems

Lastly, in this work we examine the viability of using state-machine replication as the

primary exascale fault tolerance mechanism, with hashed-based incremental check-

point/restart providing secondary fault tolerance when necessary. Using the afore-
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mentioned model, we show this fault-tolerance mechanisms “break-even” point (the

point in which the nodes hours used for this method is less than a competitive

method) is less then the projected sizes of next-generation exascale systems.

1.7 Document Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we present

background information and related research in reliability metrics, traditional roll-

back recovery and other checkpointing methods, forward error recovery – most no-

tably state machine replication, fault-tolerant algorithms, and proactive migration.

Chapter 3 describes a model- and simulation-based approach to show the benefits

of state-machine replication for exascale-class systems. In Chapter 4, we describe a

library that implements state-machine replication in the HPC environment, rMPI.

rMPI is a portable, transparent replication library implemented at the MPI profiling

layer. We outline rMPI’s basic architecture, consistency requirements and protocols.

In Chapter 5 we show the runtime overheads of the rMPI library on a set of standard

micro-benchmarks and a number key capability HPC workloads. Combining the re-

sults from the previous chapters, we show the viability of our replication approach in

Chapter 6 on a number of exascale system parameters, including CPU failure rates,

aggregate checkpoint I/O bandwidths, and various degrees of redundancy. Chap-

ter 7 looks at the viability of a hash-based incremental approach using GPUs to

reduce checkpoint saved state and therefore commit times for extreme scale systems.

We conclude with a summary of our research contributions and future directions in

Chapter 8.
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Background and Related Work

This section describes previous research as it relates to fault tolerance for high-

performance computing. First, we carefully define what is meant by faults and

failures, as well as the the metrics used to describe the reliability of an HPC system.

The remainder of the chapter outlines a number of popular methods used to ensure

progress of applications across faults. This includes traditional rollback recovery and

its various optimizations, i.e. incremental checkpointing and asynchronous check-

pointing with message logging. The chapter concludes with a discussion of state

machine replication and application algorithms that are resistant to faults.

2.1 Failures, Faults, and Associated Models

As this work deals with fault-tolerance for emerging exascale systems, it is important

to carefully define what is meant by faults, errors, and failures. Generally a fault

refers to the unexpected behavior or defect in the system at its lowest level [34, 35].

An example of a fault could be a memory cell which is stuck to the value “0”. Faults

are classified as reproducible if they always reoccur or non-reproducible otherwise.
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Our previous stuck-to-zero memory cell example would be classified as reproducible

assuming the defect which ties the cell at zero is not transient. In contrast to fault,

a failure or error is the externally visible manifestation of the fault to the end user.

This failure or error is a deviation of the system from its specification [34]. Returning

back to the memory cell example, one possible error from this fault could be an

incorrect arithmetic operation which uses a value previously stored at the location.

This incorrect value can cause an error or failure of the system. In scenarios where

there is no distinction between a fault and the corresponding failure, these terms are

used interchangeably.

There are a number of different causes of failures in HPC systems. Design er-

rors are those failures in which the system was not designed to correctly perform

the expected behavior. Design errors include both software (bugs, race conditions,

deadlocks, etc.) and hardware design errors. Additionally, failures can be attributed

to system overloading (e.g. denial-of-service attack) and age and stress induced wear

down of components. A distinction is typically made between hard and soft errors. A

hard error is typically related to a component in the system that no longer functions

properly and is therefore non-transient, while soft errors generally refers to those

errors which are transient and can be resolved by resetting the system.

Traditionally, when talking about faults we describe the effect of a fault by de-

scribing the resulting behavior of the system when the fault has occurred. These be-

haviors are typically grouped in a hierarchic structure called fault models [34,36,37].

Correctness and cost of proposed fault-tolerant approaches are evaluated with respect

to a specific fault model. The most popular of these models include:

Fail-Stop Processors stop executing but this failure can easily detected by its neigh-

bors.

Crash Processors simply stop executing but neighbors may be unable to detect
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when the error has occurred.

Byzantine Processors continue functioning but may behave in an arbitrary and

sometimes malevolent manner [38–40].

In this hierarchy, Byzantine is the most general as it includes the behavior of

all other models listed and fail-stop is the most limited as it requires malfunctioning

units to no longer function and all other units atomically be made aware of the failure,

which may not be realistic for the majority of failures seen on actual hardware.

2.2 Reliability Metrics

A number of metrics are used in addressing the resilience of large-scale HPC ma-

chines. The reliability of a component describes the probability that component will

perform its intended function during a specified period of time. The metrics fail-

ure rate, Mean Time Between Failure (MTBF), Mean Time To Interrupt (MTTI),

and Mean Time To Repair (MTTR) are fundamental terms used to describe the

reliability aspects of a component or system.

The failure rate (λ) is the frequency with which a component experiences faults.

The mean time between failures (MTBF) is the mean time between two failures of

the considered system. This time is equal to the sum of the mean time to interrupt

(MTTI) and mean time to repair (MTTR). Sometimes MTTI is replaced by the

mean time to failure (MTTF).

Note that these reliability metrics do not include any information about the

methods used to recover from failures or how efficient these methods are. We address

recovery methods in the following sections.
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2.3 Traditional Rollback Recovery

2.3.1 Overview

The presence of failures in the hardware or software of parallel computers has cre-

ated a requirement for the use of fault tolerance mechanisms in order to make sure

that the application finishes successfully. In case of failure, the application stops or

terminates with incorrect results because it has not been designed to handle these

error situations. To ensure progress across faults, a number of techniques have been

created. The most common of which, described in this section, is rollback recovery.

Rollback recovery, or backward-error, protocols [41–45] have been the dominant

fault tolerance mechanism in HPC for over 20 years. In rollback recovery, the process

and/or communication state [46] is periodically saved to stable storage. Upon failure,

the system rolls back computation to the last known good state saved to stable

storage. In this protocol, the amount of work lost upon failure is the work computed

since the last known good state was saved. The two main variants of rollback recovery

are checkpoint and log-based protocols.

2.3.2 Traditional Checkpoint/Restart

Traditional checkpoint/restart has been the dominant fault tolerance mechanism in

high performance computing systems for at least the last 30 years. In current systems

this approach generally works by saving the state of the application periodically

throughout the application’s computation. When a failure has been reached, the

last known good state is read from stable storage and computation is continued from

that state.
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Coordinated Checkpoint/Restart

Coordinated checkpoint/restart ensures the consistency of checkpoints by synchro-

nizing all nodes before writing a checkpoint. This method generally works as follows:

1. Applications periodically quiesce all activity at a global synchronization point,

for example a barrier;

2. After synchronization, all nodes send some fraction of application and sys-

tem state, generally comprising most of system memory, over the network to

dedicated I/O nodes;

3. These I/O nodes store received checkpoint information data to stable storage,

currently hard disk-based storage;

4. In the event of an application failure, the stored checkpoint is used to restart

the application at a prior known-good state.

This synchronization limits the domino effect [47] and ensures all checkpoints are

globally consistent and only the last successfully saved checkpoint needs to be kept.

This synchronization can be done by either quiesing the communication state before

writing the checkpoint [41,48–50] using, for example, a barrier operation or by saving

the communication state during the operation using a more complex non-blocking

protocol [41,46,51,52]. In addition to synchronization protocols, using synchronized

clocks to coordinate checkpoints has also been investigated [53–55]. This technique

has rather limited applicability due to the difficultly of fine-grained synchronization

on distributed memory, large-scale machines.
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Modeling Coordinated Checkpoint/Restart Performance

In [56], Daly presents a validated model for coordinated checkpoint/restart assuming

exponential failures. There are a number of similar first-order models in literature

[56–60]. We choose Daly’s model due to its accuracy above the others. In addition to

the checkpoint model (presented here in Equation 2.1), Daly also derives an optimal

checkpoint interval τ̃opt (Equation 2.2).

Tw(τ) = Θe
R

Θ (e
τ+δ

Θ − 1)Ts

τ
for δ << Ts (2.1)

τ̃opt =



















√
2δΘ

[

1 + 1
3

(

δ
2Θ

)
1
2

+1
9

(

δ
2Θ

)]

− δ for δ < 2Θ

Θ for δ ≥ 2Θ

(2.2)

Where:

δ Time to write one checkpoint

R Time to do a restart

Θ Mean time between failures for the system

τ Interval between successive checkpoints

Ts Application solve time with no overhead from checkpoint/restart

Tw Wallclock solve time including checkpoint/restart overheads

This model describes the wall clock time of given workload on a proposed exas-

cale system which includes the overheads of writing checkpoints as well as performing

restarts after faults. In this work, we use this validated model to evaluate the per-

formance of checkpoint/restart at the scale of proposed exascale machines, a scale

several orders of magnitude larger than what is currently available today.
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2.3.3 Optimizing Rollback/Recovery

The overheads associated with traditional rollback recovery have been known and

studied extensively in the past twenty years [6, 26, 41, 52, 61–66]. Due to this known

overhead, a number of techniques have been proposed to decrease the costs while

still delivering the fault tolerance benefits [41]. These techniques include incremen-

tal, copy-on-write (COW) or forked checkpointing; uncoordinated checkpointing;

communication-induced checkpointing; and asynchronous checkpointing with mes-

sage logging.

Incremental Checkpointing

Incremental checkpointing [25,26,41,67–73] decreases the overhead of taking a check-

point by reducing the amount of application state or data saved to stable storage at

each checkpoint [74]. Incremental checkpointing reduces the amount of state saved by

only saving that state which has changed since that last checkpoint has been written.

A variety of methods have been used to determine which state has changed, from

compiler based to techniques [67] based on saving dirty virtual memory pages [68,69].

Hash-based Incremental Checkpointing

Hash-based Incremental Checkpointing, sometimes referred to as probabilistic check-

pointing [25], is a system-based checkpoint method that attempts to minimize the

state saved in a checkpoint and therefore optimize checkpoint commit times. This

technique uses computational hash algorithms to determine the portions of a process’

address space that has changed in a checkpoint interval, rather than the dirtied pages

used in standard incremental checkpointing. Another key feature of this method is

the ability to allow finer-grained detection of dirtied blocks than is currently possible
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using mechanisms based solely on page protection mechanisms. This approach has

previously been dismissed as being to computationally expensive [27,28] to reap the

meager benefits in state compression.

With a probabilistic hash-based approach aliasing is a concern. Aliasing, also

referred to as collisions, comes about when modifications to a block are just such

that the key values are identical. The danger with aliasing is the library will not

save modified application data, thereby corrupting the application in the event of a

restart. Previous studies have shown the likelihood of aliasing to be higher in practice

then expected theoretically for a number of hash functions. Specifically, with the hash

signature functions CRC32 and XOR, the probability of collision has been shown to

be too high to be considered safe [27]. Secure hash signatures like MD5 and SHA256,

however, have been shown to behave in practice as expected theoretically, and are

therefore reliable enough to be used in a hash-based approach [28].

Recently, Agarwal et al. [26] investigated the performance characteristics of a

hash-based adaptive incremental checkpointing library. The authors use an MD5

hash to determine the portions of an application address space that have changed

in a checkpoint interval. This work failed to evaluate the merit of this hash-based

technique on actual HPC capability workloads, instead using micro-benchmarks. In

addition, the authors failed to evaluate the merit of this technique compared to

application-specific checkpoint mechanisms that exist in many capability workloads.

Copy-on-write Checkpointing

Copy-on-write checkpointing, or forked checkpointing [43,71,73,75–77] decreases the

overhead of taking a checkpoint by having a background process save application

state to stable storage while the original process continues computation. This al-

lows both the checkpoint process and original process operate concurrently. If the
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underlying system supports virtual memory page copy-on-write semantics, both the

checkpoint process and the original process share the read only and unmodified

writable pages of the process, thereby reducing the memory overheads to be only

those memory pages that have been written to since the checkpoint was initiated.

While this method allows for the simultaneous execution of the checkpoint and

application processes, there are associated costs. As outlined above, the memory

footprint of this method is greater than traditional blocking checkpoint/restart. Even

if copy-on-write is supported, this footprint difference can still be quite large in

today’s data-intensive applications. In addition, the page copy operation can be

an expensive operation. Lastly, the concurrent checkpoint process typically uses

valuable memory bandwidth, a known limiter of HPC application performance.

Remote Checkpointing

Remote checkpointing [78–80] saves checkpoints to remote resources, leveraging net-

work resources on the nodes. This methods allows for performance advantages in

environments where network bandwidth is greater than I/O bandwidth to local stor-

age devices or environments where local storage is either not available or too small to

save application state. As this checkpoint data is saved remotely, the data exists in

the system even if the corresponding node has failed. This method seems to be losing

favor with the advent of fast, inexpensive stable storage, for example solid-state disk

(SSD) devices.

Uncoordinated Checkpoint/Restart

In contrast to coordinated CPR, in uncoordinated checkpoint/restart [51,81–83] the

processes checkpoint their state independently of each other. As these checkpoints are

saved independently, ensuring a globally consistent checkpoint can be quite difficult.
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Due to this difficulty, all local checkpoints must be saved. Upon failure, the runtime

system must examine all checkpoints to compute a globally consistent checkpoint if

it exists. If no such globally consistent checkpoint exists, computation can rollback

execution to the beginning of execution, the so-called domino effect [47].

Communication Induced Checkpoint/Restart

A hybrid of both coordinated and uncoordinated checkpoint/restart, communication-

induced checkpointing [84–89] attempts to avoid useless checkpoints. In communica-

tion-induced CPR, processes take independent checkpoints but must also take check-

points based on the communication patterns of the application. This communication-

induced checkpoint protocol is piggybacked on the application’s messages. There

are two main approaches for when these communication-induced checkpoints must

be taken; model-based and index-based protocols. Model-based protocols [84–86]

attempt to prevent saving useless checkpoints by protecting the patterns of check-

pointing and communication that create them. Index-based protocols [88,89] on the

other hand, use ordering techniques such as logical clocks [87] to ensure no useless

checkpoints are created.

Asynchronous Checkpointing with Message Logging

Asynchronous checkpointing with message logging, similar to uncoordinated check-

pointing, [90–97] attempts to improve checkpoint performance by avoiding the syn-

chronization that ensures a consistent checkpoint. In these systems, nodes generally

checkpoint and restore from local storage without the synchronization used by co-

ordinated checkpointing. To support a node restoring from a local asynchronous

checkpoint, nodes in this approach keep a log of recent messages that they have sent.

When a node restores from a previous checkpoint, it can then replay reception of
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messages using a remote nodes log.

While this approach can increase checkpointing performance, it also generally

assumes the availability of local storage. In addition, logging increases the latency

of messaging operations and potentially takes significant amounts of space. Finally,

asynchronous checkpointing approaches can result in cascading rollbacks; recent work

attempts to bound the amount of rollback that may be necessary [98], but also places

non-trivial limits on application behavior. We are unaware of any studies examining

performance of message logging approaches at large scales (e.g. thousands of nodes

or larger).

2.3.4 High-speed Storage for Checkpoint/Restart

High speed local storage, for example local disk and flash memory systems, has pe-

riodically been proposed to speed up checkpoint/restart systems by placing large

amounts of high-speed storage near the data that must be checkpointed. The Ex-

ascale planning report [12] notes that placing spinning storage and a flash RAM in

each system node would allow nodes to checkpoint in between four minutes and one

second. This would in turn increase system utilization to from 59% to 97% ( [12],

Table 7.12, revised using Daly’s second order model.)

However, deploying large amounts of local non-volatile storage in an exascale

system is potentially very challenging. Local disk-based storage has traditionally

been avoided because of the increased failures it may cause. Upcoming non-volatile

phase change PCRAM and resistive RRAM devices provide high bandwidth and

reliability, but are potentially very expensive. Unless their cost per bit rivals that

of DRAM, using such technologies for checkpoint/restart purposes would result in

checkpointing hardware that makes up a much larger portion of the system cost.

Modern NAND and NOR flash technologies are potentially the most promising
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for buffering and storing local checkpoints because of their comparatively low cost,

high density, and high reliability. NAND flash write bandwidths are currently in

the low GB/s range, allowing them to checkpoint a node in a few minutes. Assum-

ing that exascale MTTIs can be kept at or above one hour, this would result in

system utilization of 80% or higher. However, their write durability would require

periodically replacing all flash memory in the system.

2.4 Other Checkpointing Systems

Memory-based checkpointing [99–103] uses the the memory of a remote machine to

checkpoint node state. Unless node memory is primarily read-only (in which case

RAID 5-like techniques can be used), this approach doubles the memory demands

of an application. Since memory is regarded as a key budget and power constraint

in exascale systems, it is unclear if the benefits of replicating only memory are su-

perior to the qualitative advantages of state machine replication described in this

dissertation.

Multi-level checkpointing [80] is a library-based approach for controlling check-

pointing to multiple storage targets, including memory-based checkpoints, check-

pointing to local storage, and remote checkpoints, into a single system. Because of

this, it shares some of the advantages and disadvantages of memory-based check-

pointing and local storage techniques. Unlike these techniques, however, multi-level

checkpointing has the flexibility to choose between multiple levels of storage based

on system design parameters, making it a promising technique for exascale systems.

Lastly, hardware-based mechanisms utilize specialized hardware primitives to

automatically perform checkpoint and logging of machine state [104, 105]. These

memory-based hardware approaches share the speed advantages of memory-based

checkpointing with only very modest hardware modifications. These modifications
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typically include redundant storage in memory for the saved checkpoints and a

directory-based cache controller. As these method requires hardware modifications

and replication in memory, again it is unclear if this method is appropriate for large-

scale systems.

2.5 State Machine Replication

2.5.1 Overview

Redundant computation, process replication, and state machine replication have long

histories and have been used extensively in distributed [22,97,106–116], mission crit-

ical [20–22,117], and storage systems [118–121] as a technique to improve fault toler-

ance. In state machine replication, one or more replicas of each process is maintained

and every node computes deterministically in response to a given external input, for

example a message being received. This technique then uses an ordering protocol to

guarantee all replicas see the same inputs in the same order, and additional commu-

nication to detect and recover from failures. Where there are disagreements, output

correctness may be performed using reliable quorum algorithms.

State machine replication offers a different set of trade-offs compared to rollback

recovery techniques such as checkpoint/restart. In particular, it completely masks a

large percentage of system faults, preventing them from causing application failures

without the need for rollback. Some forms of state machine replication can also be

used to detect and recover from a wider range of failures than checkpoint/restart,

including Byzantine failures [23]. Unlike checkpoint/restart, however, state machine

replication is not sufficient by itself to recover from all node crash failures; faults

that crash all of a node’s replicas will cause a computation to fail.

This approach has previously been dismissed in HPC as being too expensive for
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the meager benefits that are seen at present machine scale [122–124]. For the reasons

described in earlier this chapter regarding its scalability, however, several authors

have recently suggested using this technique in HPC systems [7, 125, 126]. In later

chapters, we examine the suitability of a specific type of state machine replication in

HPC systems.

2.5.2 Passive versus Active Replication

As stated previously, in state machine replication the entity being replicated is a

process. Two replication strategies have been used for replicating this process: active

and passive replication. In passive replication [106,108] there is only one process that

handles events. This process is called the leader or primary process. After processing

a request, the leader updates the state on the other backup replica processes and

sends back the response to the client. In active replication [97, 106, 108, 112] each

request is processed by all replicas. To ensure all the replicas receive the same

sequence of operations, an atomic broadcast protocol or group communication must

be used. This group communication protocol [127–130] guarantees that either all the

replica receive an event or none, and that they all receive events in the same order.

2.5.3 Group Communication

As described in the previous section, state machine replication involves communica-

tion and coordination among a set of replicated processes. Algorithms that coordi-

nate the groups in the replica set are commonly referred to as group communication

algorithms. These algorithms typically deal with reliable delivery and consensus is-

sues such as consistency (all members of the group agree on a value) and liveness

(all processes in the group eventually make progress).
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The most prominent group communication mechanism in distributed systems

is Lamport’s Paxos consensus algorithm [130]. This distributed algorithm ensures

consensus in a network of unreliable processes. Like most distributed consensus

algorithms, this algorithm works on the idea that all members propose their output

to the entire group, or a subset, and then coordinate to decide which output is correct.

There is a great deal of previous work that focuses on the semantics, correctness,

efficiency, and adaptability of group communication in financial and mission critical

applications [127–129, 131–136].

One distributed consensus algorithm used in state machine replication is referred

to as a total order broadcast. A total order broadcast algorithm [127, 128] provides

reliable delivery of messages within a group in the same order for all processes. This

ordering mechanism typically has an associated performance cost. For example, a

message may not be delivered to a process until all other processes in the group have

agreed upon its delivery. This cost is typically an increase in message latency.

Approaches widely used to implement total message ordering include sequencer,

privilege-based, and communication history algorithms. In sequencer-based total

ordering, one group member is responsible for the ordering and reliable delivery of

messages within the group. A fail-over mechanism for the sequencer assures fault-

tolerance for this mechanism. Example systems which utilize sequencer algorithms

include the Amoeba distributed operating system [129] and the Isis communication

system [137]. Privilege-based total ordering algorithms rely on the idea that group

members can reliably broadcast only when granted to do so. For example, in the

Totem protocol [138], a token is rotated among the replica group and only the holder

can reliably broadcast. A token time-out ensures liveness in the system. Lastly, in

communication history algorithms, messages are reliably broadcast by any member,

at any time, without an a priori order. Total message order in the system is en-

sured by delaying message delivery until delivery information is gathered from other
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members of the group [139].

These three ordering approaches have significant advantages and disadvantages.

Sequencer and privilege approaches provide good performance when the system is

relatively idle. When multiple group members are active and constantly broadcast-

ing, however, the latency is limited by the time for the sequencer to produce the

ordering or circulate the token. Communication history algorithms increase latency

to detect the “happened before” [87] relationship between messages. This delay

typically depends on the slowest group member.

Several studies have attempted to reduce the cost of these approaches. Early

delivery algorithms [131,132] reduce latency by reaching agreement with a subset of

the process group; optimal delivery algorithms [133,134] deliver messages before the

total message ordering has been determined but notify applications if the final total

order is different than that of the delivered order.

2.6 Other Forward Recovery Methods

In contrast to rollback recovery, forward recovery avoids restarting the application

from a previously saved, known-good state by recovering on its own to a state corre-

sponding to a normal, fault-free execution. Applications must typically be designed

specifically with this forward recovery property. These algorithms eventually con-

verge towards a correct state in the presence of perturbations or failures of any kind.

One well known class of forward-recovery algorithms is refered to as self-stabilizing

codes [140]. An algorithm is self-stabilizing if, independent of each component’s

initial state, it arrives to a correct working state in a finite amount of time. To do

so, this class of algorithms must assume that errors are transient and can occur in

any part of the system. In these algorithms, there is typically a phase between the
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receiving of an error and its stabilization where the algorithm may provide incorrect

results. It is the responsibility of the user to handle this non-stabilized window.

While it is not clear if this forward recovery method is viable for HPC applica-

tions, it has been shown to have applications in collective communication libraries

and runtime environments. As an example, Geist and Engelmann [141] proposed a

forward recovery method for computing a global maximum in the presence of faults.

While this algorithm correctly computes the maximum from the live nodes in a

distributed system, its computation time is unbounded.

This same time-bound limitation applies to self-stabilizing algorithms: they can

be used for collective operations but the time in the stabilization phase is unknown.

In fact, most current self-stabilizing algorithms cannot tolerate failures during the

stabilization phase. Due to the fact that these algorithms do not produce exploitable

results during the stabilization phase, they cannot be used as they are in situations

where the system suffers from very frequent failures (if the inter-failure period is

shorter than the stabilization time). This is a very important limitation for numerical

algorithms and HPC applications for exascale systems.

2.7 Fault-Tolerant Algorithms

The notion of application-based fault tolerance is to design computation algorithms

that either ignore failures and still deliver a correct answer, or are able to recover

using techniques such as redundant data or computation. An underlying requirement

of these algorithm-based approaches is that the underlying system software is also

capable of continuing in the presence of faults [142–146].
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2.7.1 Application-based Data Redundancy

One recent mechanism for application fault tolerance is data redundancy. This

method works by encoding redundant data into the problem such that data from

failed nodes can be recomputed. In addition, the algorithm is modified to update

the encoding as computation progresses. In general this method is adjustable by the

encoding algorithm used such that a specified number of failures can be tolerated at

a time. Recent results using this technique show this method can be used with a

very low performance overhead [147–149].

2.7.2 Application-based Computational Redundancy

In contrast to the data redundancy method described in the last section, compu-

tation redundancy relies on the algorithm-specific relationship between the parallel

application and its individual data chunks. If data is lost due to a failure, this im-

pacts the result by possibly increasing the margin of error or by running the surviving

nodes for longer until the problem has converged. Therefore, the number of nodes

lost determines the application time-to-solution or margin of error.

Recently, Engelmann and Geist [150] used chaotic relaxation and meshless meth-

ods to ensure progress in the presence of faults. The authors showed that the con-

vergence of a finite difference code is not significantly affected if the number of failed

nodes is less than 1% of the total number of nodes. Though these algorithmic meth-

ods show promise, they have not been tested extensively and there is concern that

they may not be applicable to all applications.
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2.8 Proactive Migration

A recently proposed fault-tolerance method, proactive migration (or fault avoid-

ance) [151, 152, 152–155] allows applications to survive faults by migrating when a

fault is imminent. In contrast to the traditional reactive fault handling techniques,

proactive migration utilizes reliability models based on historical events and current

system health status information in order to avoid application faults. For example,

a process may be temporarily migrated when it displays behavior that is similar

to a component that is about to fail, such as increases in temperature or unusual

communication errors.

This method is dependent on accurate fault predictor models. Therefore, much

of the research in this area is in the development of these predictive models and

algorithms and validating these models using limited reliability log data [151, 153,

155]. There is great concern on the accuracy of these predictors for next-generation

systems. This is due to the fact that all available fault trace data is either not

representative of a production system or extracted from system that are orders of

magnitude smaller than proposed exascale systems.

Independent of the predictors’ accuracy, this method must handle the scenario

where a fault arrives before the application can be migrated. Therefore, this method

must be combined with a method such as checkpoint/restart to handle uncaught

error state. If failures can be predicted with great accuracy, these methods can

increase the checkpoint interval and therefore lower its overhead.

2.9 Summary

In this chapter we evaluated previous research on tolerance to faults for long run-

ning distributed-memory applications, first providing definitions of what we mean
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by a fault or failure as well as defining the metrics used to describe the reliabil-

ity of large-scale machines. We then discussed a number of methods used by HPC

applications to ensure progress in the presence of faults. This included the domi-

nant checkpoint/restart and its variants, outlining the limitations of this methods

for future extreme-scale systems. In addition, we described a number of emergent

fault-tolerance methods for HPC including forward recovery, proactive process mi-

gration, and fault-tolerant algorithms. Lastly, we discussed a common method used

in distributed and mission critical systems to mask faults, state machine replication.

For each of these methods, the costs and benefits are still unclear for an exascale

class systems. In this thesis we evaluate and analyze two of these methods, state

machine replication and hash-based incremental checkpointing.
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Replication in High-Performance

Computing

3.1 Overview

The first technique we study to keep checkpoint/restart viable for exascale systems

is replication. In this work, we propose to use state machine replication to dramati-

cally reduce the checkpoint frequency of the application. State machine replication

is conceptually straightforward for message passing HPC applications. In this ap-

proach, each replica is created on independent hardware for every processor rank in

the original application of which failure cannot easily be tolerated. Note that we do

not require all ranks to be replicated—in master/slave-style computations where the

master can recover from the loss of slaves, only the master might be replicated.

The replication system then guarantees that every replica receives the same mes-

sages in the same order and that a copy of each message from one rank is sent to

each replica in the destination rank. In addition, the replication system must de-

tect replica failures, repair failed nodes when possible, and restart failed nodes from
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active replicas. The replication system may also periodically check that replicated

ranks have the same state.

Checkpoint/restart recovery is still required when using replication, specifically

when all replicas of a particular process rank have failed. Checkpointing is also

needed to recover from situations where replica state becomes inconsistent, for ex-

ample due to silent (undetected) failures.

Replication requires significantly increased computational resources – at least

double the hardware for replicated ranks. In cases where only portions of an applica-

tion must be replicated, these requirements are potentially modest. For many HPC

applications (e.g. traditional stencil calculations), however, this approach doubles

the required hardware—2N nodes are required to fully replicate a job that would

otherwise run (perhaps much more slowly due to failures) on N nodes. In addition,

there are runtime overheads for maintaining replica consistency.

This cost in resources, however, comes with significant and important advantages:

• Dramatically increased system MTTI. This approach dramatically re-

duces the number of faults visible to applications. Specifically, the application

only sees faults that crash (or otherwise fail) all replicas of a particular rank.

• Significantly reduced I/O requirements. Increased system MTTI reduces

the speed at which checkpoints must be written to storage to allow applications

to effectively utilize the system. A smaller fraction of the system cost and power

budget must as a result be spent on the I/O system.

• Detection of “silent errors.” By comparing the state of multiple repli-

cas (e.g. using memory checksums) prior to writing a checkpoint, replication

can detect if application state has been corrupted and trigger restart from a

previous checkpoint.
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• Increased system flexibility. The extra nodes used for redundant compu-

tation when running the largest jobs can be used for providing extra system

capacity when running multiple smaller jobs for which fault tolerance is less of

a concern. A system that uses N nodes and an expensive I/O system to reach

exascale can only run 100 10PF jobs at a time, for example. A system that

uses 2N nodes and a less expensive I/O system to reach exascale, however, can

potentially run 200 10PF jobs at a time.

This chapter outlines our approach for evaluating replication for high-performance

computing. First, in Section 3.2 we describe our method of modeling the quantitative

cost and its benefits for extreme-scale systems, presenting an initial comparison of

traditional checkpoint/restart to replication with checkpointing in Section 3.3. Then,

in Section 3.4 we describe a simulation-based analysis of replication, along with a

comparison to the model-based approach described previously. In later chapters,

we examine the runtime overheads of replication on a number of capability HPC

workloads and micro-benchmarks.

3.2 Modeling Replication for HPC

The potential benefits of redundant computing can be illustrated using a generaliza-

tion of a common problem in probability theory called the birthday problem [156].

The birthday problem is concerned with the expected (or average) number of people

needed to find two persons with the same month and day of birth. The birthday

problem result is used in the analysis of many problems in computer science, includ-

ing collisions and chaining in hashes [157].

For the purpose of this work, the results of the birthday problem are generalized

to describe the impact of redundant computing on application fault tolerance and
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the increase in MTTI of our redundant system. If we consider each of the processes

of an application to be a bin with a capacity equal to the number of replicas, then

asking how many faults this new system can handle without interruption is equivalent

to asking what is the expected number of throws of random balls until one bin

has been filled to capacity. In terms of the birthday problem, this is equivalent to

asking, assuming birthdays are uniformly distributed throughout an N (the number

of unique processes) day year, how many people on average are needed to ensure

at least two share the same birthday. In the case of two replicas per process, the

birthday problem tells us that the expected number of throws (or people) is O(
√
N)

(again where N is the number of bins or unique processes). More generally, the

average number of faults F our redundant system of N sockets can absorb, assuming

double redundancy, is [157, 158]:

Q(N) = 1 +

N
∑

k=1

N !

(N − k)! ·Nk
(3.1)

Figure 3.1 shows a plot of Equation 3.1 as a function of the number of sockets.

From this figure we see the well known result for the birthday problem for N = 365

(around 24.16 people). We also see that adding replicated processes to our system

dramatically increase its ability to absorb faults, thereby increasing the effective

MTTI of the application. For example, for N = 200, 000 nodes, on average, we can

sustain 561 faults before our application will be interrupted. Therefore, with dual-

redundancy, the MTTI will increase by a factor of 561 in the redundant case over

the non-redundant case.
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Figure 3.1: Expected number of node failures before an application interrupt in a
system with redundant nodes. Numbers are calculated using the birthday prob-
lem Equation 3.1.

3.2.1 Approximations for the Birthday Problem

In the remainder of the section we investigate two approximations for solving the

birthday problem. We use these approximations in following chapters to evaluate

the benefits of replication by approximating the number of interrupts an application

can absorb before needing to restart. The two approximations evaluated in this

section include one attributed to Ramanujan [158] and one based on probabilistic

indicator variables [159]. In describing each of these methods, we also outline its

advantages and shortcomings.

Ramanujan’s Approximation

One version of the birthday problem asks how many people on average need to be

brought together until there are enough to have a 50% or better chance that two
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of them share the same birth month and day. Equation 3.2, from [29, 30], shows

how to calculate this version of the birthday problem. It is the so called Q-function

described in [158] and examined by Knuth in [157] in the context of hashing. The

answer for a N = 365 day year, and all days equally likely, is 24.6 people. Note that

this is different from the 23 people needed in the classical birthday problem where

it takes that many people to have a better than 50% chance that any person in the

group has a matching birthday with any other person in the group.

Q(N) = 1 +

N
∑

k=1

N !

(N − k)! ·Nk
≈

√

πN

2
− 1

3
+

1

12

√

π

2N
− 4

135N
+ · · · (3.2)

This Q function can be approximated for the case with two replicas as described in

Equation 3.3 [158].

R2(N) =

√

πN

2
− 1

3
(3.3)

Indicator Variables

Another method for solving the birthday problem is done using indicator variables

and the linearity of expectation from probability theory [159]. While this method is

a more coarse approximation then the ones described thus far, it has the advantage

that it can be easily extended to scenarios of greater than two replicas.

In this section we outline this approximation for the birthday problem for two

replicas to motivate how it can be modified for greater number of replicas. First,

assume we have k individuals each with a birth date uniformly distributed from a

year continuing N possible days. For each pair of individuals (i, j), we define a
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random variable Xij as follows:

Xij =







1 if i and j have some birth date

0 otherwise
(3.4)

The probability that two individuals have the same birth date 1
n
. Therefore, from

linearity of expectation, the expected value E of Xij is:

E[Xij ] = 1 · 1
n
+ 0 · (1− 1

n
) =

1

n
(3.5)

Now to get the expected number of pairs of all individuals having the same birthday,

we sum over all pairs.

k
∑

i=2

i−1
∑

j=1

E[Xij ] =

(

k

2

)

· 1

N
=

k(k − 1)

2N
(3.6)

It is straight-forward to show that if we extend Equation 3.6 for the expected number

of groups of R people with the same birthday we get:

ER(N) =

(

k

R

)

1

NR−1
(3.7)

For this work, to get the expected number of faults that can be absorbed by

our replicated system we input the number of replicas R, the number of application

visible processes N , set the expected number of pairs equal to 1 and solve for k.

3.2.2 Comparison of Approximations

In this section we show two approximations that exist for solving the birthday prob-

lem, each with its own limitations. We look at a comparison of these functions

to the value from Equation 3.1. Figure 3.2 shows a comparison of Equation 3.1,
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Equation 3.3, and Equation 3.7. In the figure, the left-hand axis corresponds to the

expected number of people that must be chosen at random in order to have at least

one pair with the number of days in that year on the X-axis. The right-hand axis is

the relative error of Equation 3.3 and Equation 3.7 in comparison to Equation 3.1.

From the figure we see that Equation 3.3 is an asymptotically accurate approx-

imation for the Q-function. Equation 3.7, on the other hand, shows a nearly 14%

overestimation for the birthday problem. The reason for this overestimation has to

do with the replacement assumption inherent in the original birthday problem for-

mulation. Our derivation of Equation 3.7 makes no such assumption and making

such as assumption would greatly complicate the derivation. Again, while this indi-

cator method formulation overestimates the birthday problem result, we can correct

for outside of its derivation. Therefore, the Q function in Equation 3.1 is the most

accurate, but only accounts for two replicas and is too expensive to compute. Equa-

tion 3.2 and Equation 3.3 asymptotically approximate Equation 3.1 and have the

advantage of being much easier to compute, but still only model two replicas. Equa-

tion 3.7 is the least accurate approximation of Equation 3.1 but has the advantage

of modeling any number of replicas.

3.3 Model-based Analysis

Using the model from Section 3.2, we examine the performance benefits of state ma-

chine replication compared to its fundamental redundant hardware costs. For this

initial comparison, we assume every process is replicated, and make very simple as-

sumptions about system characteristics. More specifically we assume that (1) There

is no software overhead for maintaining replica consistency; (2) That the system can

checkpoint in a fixed amount of time regardless of scale; and (3) That all failures

follow a simple exponential distribution. We will relax these three assumptions in
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Figure 3.2: Comparison of a number of methods for approximating the birthday
problem. Q(m) refers to Equation 3.1, R2(X) refers to Equation 3.2, and E2(X)
refers to the indicator variables method of Equation 3.7 with two replicas.

the following sections of this chapter, as well as in later chapters.

When two nodes are used to represent the same MPI rank, the failure of one

node in a pair does not interrupt the application. Only when both nodes fail does

the application need to restart. The frequency of that occurring is much lower than

the occurrence of a single node fault and can be characterized using the birthday

problem described in Section 3.2. In particular, we use Equation 3.3 to estimate the

expected number of faults absorbed by the replication technique.

Figure 3.3 estimates the resulting application efficiency with optimal checkpoint

intervals for both state machine replication and using only traditional checkpoint/re-

start. MTTI is computed directly from the birthday problem approximation in

Equation 3.3, while the resulting efficiency is computed using Daly’s higher-order

checkpoint/restart model and optimal checkpoint interval [56]. These calculations

assume a 43800 hour (5 year) per-socket MTBF based on past studies [11, 18], a
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Figure 3.3: Modeled application Mean Time To Interrupt (MTTI) and efficiency
with and without state machine replication for a 168-hour application, 5-year per-
socket MTBF, and 15 minute checkpoint times. In the replication case we have two
replicas per process rank. The shaded region corresponds to possible socket counts
for an exascale class machine [12].
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constant 15 minute checkpoint time as shown in Table 1.1, and a 168 hour application

solve time.

These results show the dramatic increase in system MTTI that state machine

replication provides, allowing it to maintain efficiency close to 50% as system socket

count increases dramatically towards the 200,000 heavyweight sockets suggested for

exascale systems [12]. In contrast, the efficiency of a checkpointing-only approach

drops precipitously as system scales approach those of upcoming exascale systems.

3.4 Simulation-Based Analysis

In addition to the model-based analysis present in the previous section, we also

present a simulation-based approach. We use this simulator to verify, integrate, and

expand the results from the previous sections into a more complete analysis of the

costs and benefits of state machine replication for HPC systems. Using a simulator

allows us to examine real failure distributions derived from studies of failures of

real HPC systems in addition to the exponential distributions assumed by analytical

models such as those of the Daly model or the birthday problem.

3.4.1 Simulator Details

This simulation tool written by Rolf Riesen and presented in [160] mimics application

progress by assuming the application is always in one of four states:

Work Making progress towards a solution

Checkpoint Writing state information to stable storage

Recover Recovering from an interrupt
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Rework Recomputing lost work

The simulator randomly generates node failures by determining which sockets fail

and when they fail. The distribution and parameters of the generator are specified by

the user. This simulator assumes a perfectly weak-scaling application; i.e., all nodes

perform the same amount of work, specified as an input parameter to our tool.

Application interrupts can occur during any of the four phases, and the simulation

continues until a specified amount of work has been completed. When an interrupt

occurs, a restart from the last successful checkpoint is initiated. The work that was

lost since the last checkpoint has to be redone in the rework phase. Following this

rework stage, the regular cycle of work and checkpointing continues.

The transitions to the checkpoint state occur whenever the checkpoint interval

timer expires, which is reset in the checkpoint state. The simulator uses Equation 2.2

from Daly [56] to calculate the optimal checkpoint interval.

3.4.2 Comparison of Simulation and Modeling

As stated previously, the simulator described in this section reproduces scenarios that

cannot be done with the model, for example, non-exponential fault distributions. In

this section we briefly compare the results of the simulator in situations that the

model can accommodate.

Figure 3.4 shows a comparison of the model and simulator in one such proposed

application run. This figure shows the time-to-solution for a 336 hour, dual redundant

application. In this figure we assume a node MTBF of five years and a checkpoint

time of 15 minutes independent of socket count. From this figure we see that the

maximum percent difference between the model and simulator is 5% or less in this

node count range. This difference is due to sampling errors at higher node counts as
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Figure 3.4: Comparison of simulator and model for a dual-redundant, 336 hour work
weak scaling problem with a 5 year MTBF and a 15 minute checkpoint write time.

the simulator uses a probabilistic model to determine faulty nodes.

3.4.3 Non-Exponential Failure Distributions

Due to their more accurate modeling of system failures, it is important we exam-

ine the viability of replication with more realistic failure distributions. For failure

information, we use numbers from a recent study of failures on two BlueGene super-

computer systems, a 16,384 node system at Rennesseler Polytechnic Institute (RPI)

and a 4,096 node system at École Polytechnique Fédérale de Lausanne (EPFL) [11].

Results in [11] show that failures in these systems are best described by a Weibull

distribution with MTBFs of 6.6 hours (11.7 years/socket) and 8.4 hours (3.9 years/-

socket), and shape (β) values of 0.156 and 0.469, respectively. These β values

(β < 1.0) describe distributions that decrease in probability over time; in HPC sys-

tems, this indicates that failures are more likely to happen at the start of a system’s
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lifetime or an application run and reduce in frequency as the system runs.

To examine the impact of these failure distributions, we build on the results

of Section 3.3 and examine how the efficiency of replication and checkpoint/restart

change under Weibull failures assuming again a fixed 15 minute checkpoint commit

time. Note that the systems from which these distributions were measured experi-

enced a significant number of I/O system failures, and it is unclear how these failures

should be properly scaled up to larger systems. As a result, we focus on how Weibull

distributions change the efficiency of replication and checkpoint/restart approach as

opposed to the specific efficiency crossover point.

Figure 3.5 and Figure 3.6 present the impact of these failure distributions on both

a replication-based approach and a purely checkpoint-based approach. In both these

figures we note that for node counts greater than 100,000 sockets, the MTTI for the

application is around the checkpoint time (δ); therefore little application progress is

made in a checkpoint interval.

These results show that Weibull failures experienced by real-world systems result

in a much more challenging fault tolerance environment, reducing the effectiveness

of both replication and traditional checkpointing approaches. However, replication is

less severely impacted than traditional checkpointing, again pointing to the potential

more viability of a replication-based fault tolerance approach for exascale systems.

3.5 Summary

This chapter presented our initial evaluation of the costs and benefits of state machine

replication for high-performance computing. We started by outlining the qualitative

advantages of this approach over other fault-tolerance methods. We then described

a number of methods for modeling and simulating the impact of replication on HPC.
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Figure 3.5: Simulated application efficiency with and without state machine rep-
lication for a 168-hour application, 4-year per-socket MTBF (Θ), and 15 minute
checkpoint commit times with failure rate drawn from exponential and Weibull dis-
tributions [11]. In the replication case we have two replicas per process rank. The
shaded region corresponds to possible socket counts for an exascale class machine [12].
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Figure 3.6: Simulated application efficiency with and without state machine rep-
lication for a 168-hour application, 12-year per-socket MTBF (Θ), and 15 minute
checkpoint commit times with failure rate drawn from exponential and Weibull dis-
tributions [11]. In the replication case we have two replicas per process rank. The
shaded region corresponds to possible socket counts for an exascale class machine [12].
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This included a discussion of the birthday problem and a number of approximations

to this common problem from probability theory. Using this model, this work showed

the significant impact replication has on application MTTI and efficiency. Lastly,

we described a coordinated checkpoint simulator and compared the results of this

simulator with the replication model. These results all showed that this replication

technique has a higher efficiency in comparison to traditional checkpoint/restart at

the socket counts expected in exascale systems, assuming no run time overheads. In

addition, using the described simulator we show that for more realistic distributions

the overheads of checkpoint/restart are more dramatic than seen with the currently

accepted exponential model.
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Chapter 4

rMPI: State-machine Replication in

a Message Passing Environment

4.1 Overview

While the previous chapter demonstrates that state machine replication is viable at

exascale in terms of the basic hardware costs, it does not evaluate the runtime over-

head of the necessary consistency management protocols. Transparently supporting

state machine replication for MPI applications on HPC systems requires maintaining

sequential consistency between replicas. It also requires protocols for detecting and

repairing failures. As mentioned in Chapter 2, these consistency protocols are po-

tentially expensive in communication-intensive HPC systems as every replica must

see messages arrive in the same order.

To study the associated overhead, we designed and implemented rMPI, a portable

user-level MPI library that provides redundant computation transparently to deter-

ministic MPI applications. rMPI is implemented on top of an existing MPI imple-

mentation using the MPI profiling hooks. In the remainder of this chapter, we outline
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the basic design and implementation of rMPI. In Chapter 5 we measure the runtime

overhead of this implementation for several micro-benchmarks and HPC applications

on a large scale Cray XT-3/4 system.

This chapter is organized as follows. Section 4.2 outlines the design of rMPI,

describing the consistency protocols and the MPI consistency requirements. In Sec-

tion 4.3 we outline the design of the rMPI prototype architecture and its usage, and

conclude the chapter in Section 4.4 with a summary.

4.2 rMPI Design

The basic idea for the rMPI library is simple: replicate each MPI rank in an applica-

tion and let the replicas continue when an original rank fails. To ensure consistent

replica state, rMPI implements consistency protocols that assure identical message

ordering between replicas. Unlike more general state machine replication proto-

cols [22,23], these protocols are specific to the needs of MPI in an attempt to reduce

runtime overheads. In addition, rMPI uses the underlying Reliability, Availability,

and Serviceability (RAS) system to detect node failures, and implements simple

recovery protocols based on the consistency protocol used.

4.2.1 Basic Consistency Protocols

The rMPI design contains a number of different consistency protocols. These pro-

tocols vary in whether active or passive replication is used. The active replication

protocols, named mirror and parallel, ensure that every replica receives a copy of

every message and it orders message reception at the replica. Both active protocols

take special care when dealing with MPI operations that could potentially result in

different message orders or MPI results being seen at different replicas. Note that
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collective operations in rMPI call the point-to-point operations internal to rMPI.

(a) Mirror Protocol

(b) Parallel Protocol

Figure 4.1: Basic active replicated communication strategies for two different rMPI
message consistency protocols. Additional protocol exchanges are needed in special
cases such as MPI ANY SOURCE.

Figure 4.1(a) shows the basic organization of the mirror protocol. The protocol
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assures that all replicas see the same messages. In this figure, A and B represent dis-

tinct MPI ranks and A’ and B’ are A’s and B’s replicas respectively. In this protocol,

each sender transmits duplicate messages to each of the destinations. Similarly, re-

ceivers must post multiple receives for the duplicate messages, but only require one of

those messages to arrive in order for the application to progress. While this approach

eases recovery after a failure, it effectively doubles network bandwidth requirements.

The parallel protocol is shown in Figure 4.1(b). For this protocol, each replica

has a single corresponding replica for each other rank with which it communicates in

non-failure scenarios. In the case of failure, one of the remaining replicas of a rank

takes over sending and receiving for the failed node. This failure detection requires

frequent message-based interaction with the reliability system on current systems. As

a result, the parallel protocol initiates approximately double the number of messages

for each send operation. These extra messages contain MPI envelope information and

are small. Therefore, the parallel protocol reduces network bandwidth requirements

while increasing the number of short messages, thereby decreasing an application’s

message rate.

The passive protocols in Figure 4.2 vary from the active protocols described

previously in that only the leader or primary ranks are involved in message sending

and reception. The difference between these two protocols is, (1) whether the leaders

push the messages to each of its replicas; or, (2) waits for the replicas to pull. As

only one replica is involved with the reception of the message, an explicit ordering

protocol is not needed. Ordering is done at the leader.

4.2.2 MPI Consistency Requirements for Active Protocols

rMPI assumes that only MPI operations can result in non-deterministic behavior,

and there are a few specific MPI operations that can result in application-visible
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(a) Leader’s Push

(b) Replica’s Pull

Figure 4.2: Basic passive replicated communication strategies for two different rMPI
message consistency protocols. Additional protocol exchanges are needed in special
cases such as MPI ANY SOURCE.

non-deterministic results. For example, rMPI must address non-blocking operations,

wildcard (e.g. MPI ANY SOURCE and MPI ANY TAG) receives, and operations such as

MPI Wtime(). As a first step, both rMPI active protocols use the notion of a leader

node for each replicated MPI rank, while non-leader nodes are referred to as replicas

or redundant nodes. When a leader drops out of a computation, the protocol chooses

a new replica from among those remaining for a rank to take over as leader.

For blocking non-wildcard receives, one of the the most common forms of MPI

communication, the mirror protocol in rMPI posts a receive for both senders A and

A’ into the buffer provided by the user. Since the data in the two arriving messages

is identical, there is no danger of corrupting the user buffer. If multiple messages

from the replica set A arrive with the same tag, rMPI must make sure that the first
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active and first redundant message arrive in the first buffer, and the second active

and second redundant in the second buffer. rMPI achieves this by using one high-

order tag bit, setting it on all outgoing redundant messages and setting the same bit

for all receives of redundant messages.

This situation is illustrated in Figure 4.3. Node A sends messages msg1 and msg2

with the same tag to node B. MPI message ordering semantics demand that msg1

arrives in buf1 and msg2 arrives in buf2. If the redundant messages msg1’ and msg2’

had the same tags as the original messages, then it would be possible for msg1 and

msg2 to both arrive in buf1 or buf2, since rMPI posts two receives for each buffer.

Using an unused tag bit to mark redundant messages avoids the possible mix-up.

Figure 4.3: Original and redundant messages with the same tag must maintain the
same order.

rMPI uses its own request handles to return to the user because many receives

will not have been submitted to the MPI library at the time rMPI needs to return

a request handle to the user. This means rMPI must maintain data structures that

map its request handles to the ones used by the underlying MPI implementation.

56



Chapter 4. rMPI: State-machine Replication in a Message Passing Environment

Wildcard receives. Due to MPI message-passing semantics and the possibility of

wildcard source receives, this basic consistency protocol is not completely sufficient.

To handle MPI ANY SOURCE and MPI ANY TAG, rMPI relies on explicit communication

between the leader of each rank and other replicas. Essentially, rMPI allows only

one actual wildcard receive to be posted at any time on a node, and then only

on the leader. When a wildcard receive is matched, the leader then sends the MPI

envelope information to replica nodes which then post for the actual message needed.

The situation is more complicated for non-blocking wildcard receives, test, and wait

operations requiring a queue of outstanding wildcard receives, but the basic approach

is similar. When the receive of a message is complete, the status information about

the receive on node B and B’ must be updated such that both nodes report the same

message source and tag, without the extra bit set, to the user.

Groups and communicators. rMPI also needs to implement its own groups.

Because rMPI re-maps ranks between the user level and the underlying MPI imple-

mentation, rMPI needs to carefully track which nodes and redundant nodes belong

to which groups. This is necessary so that message transfer functions and function

calls like MPI Group rank() work properly. The same is true for communicators and

functions like MPI Comm dup(). Implementing collectives, request handles, groups,

and communicators inside rMPI reduces the underlying MPI implementation to a

simple transport mechanism and increases the complexity of rMPI greatly.

rMPI must carefully keep track of node rank information and always let replica

nodes return to the user the rank of the leader node in a bundle. For example, MPI -

Comm rank() must return the same value on an leader node and its replica; similarly

MPI Comm size() must return the number of the unique ranks in the application.

Message destinations and sources must be treated similarly.

Finally, rMPImust guarantee that operations such as MPI Wtime() return the same
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value on active and redundant nodes, as some applications make decisions based on

the amount of time elapsed. For these situations, the leader node sends its computed

value to the redundant node. As an option, rMPI can synchronize the MPI Wtime()

clocks across the nodes [87].

4.2.3 Failure Detection

rMPI’s failure detection requirements are relatively modest, and use the underlying

supercomputer RAS system to provide much of this failure detection functionality.

Both active and passive protocols require that messages from failed nodes will be

consumed and do not deadlock the network or cause other resources, such as status

in the underlying MPI implementation to be consumed. Furthermore, failing nodes

must not corrupt the state of other nodes, i.e., corrupted or truncated messages in

flight must be discarded. Most networking technologies already do this using CRC

or other mechanisms to detect corrupt messages. The RAS system is also responsible

for the machine stopping the retransmission of messages from and to failed nodes.

For the parallel and both passive protocols we also require a method to learn

whether a given node is available or has failed. On the test systems, we typically

emulate a RAS system at the user-level. This is a table which rMPI consults, and

the RAS system updates, when a node’s status changes. It could also be an event

mechanism that informs rMPI whenever the RAS system detects a failed node.

4.3 rMPI Implementation

In this section we describe a prototype implementation of the rMPI design described

in the previous section. In an effort to illustrate a worst-case overhead of replication

in HPC, only the active protocols described in Section 4.2.1 are examined. These
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active protocols are expected to have higher overheads as they require an ordering

protocol, for example a total order broadcast.

4.3.1 Basic Architecture

The rMPI library is implemented as a library at the MPI profiling layer between an

application and an MPI implementation. In this section we list some things that are

specific to our current implementation.

The rMPI library is activated during MPI Init(), at which time it partitions MPI -

COMM WORLD into a set of active and redundant nodes. We performed this work on a

Cray XT4 Red Storm system which uses MPICH [161, 162] for message transport.

Although the design described in the previous section is agnostic of the underlying

MPI implementation, our current implementation of rMPI is tailored for a specific

MPI implementation. To accelerate prototyping, we used several functions from

MPICH, such as the MPI collective functions, which call our protocol aware point-to-

point functions. While doing this, we left several low-level MPICH internal function

calls in place. Examples include MPICH error handling and reporting functions,

checking for thread-safety, and dealing with heterogeneous systems. This means

rMPI will currently only work running on top of our specific MPICH version. Future

work for this library includes removing this MPICH-specific dependency.

4.3.2 RAS Functionality

Since few machines actually provide a RAS system that gives us the minimal set of

functions we need, we designed our own. rMPI maintains a table of all nodes in the

application and their status. We use signals and messaging to update this table and

can thus simulate the failure of nodes for testing purposes. However, since all nodes
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still are part of a complete MPI application and due to the way MPICH interacts

with the Red Storm RAS system, simulated failed nodes cannot simply exit. They

enter MPI Finalize() and wait for all other nodes to finish. This also means that

if we failed a node during an rMPI operation that involves several MPI messages,

MPICH may enter into an inconsistent state. Proper integration of rMPI, a RAS

system, and MPI would solve this problem.

4.3.3 Usage

When users start an application linked with rMPI they specify how many redundant

nodes to allocate and how to map them to the active nodes. An environment variable

specifies this mapping. The rMPI implementation imposes some restrictions on these

mappings. The redundant nodes must always be at the end of the MPI COMM WORLD

rank list. Not every active node needs to be assigned a redundant partner. If nodes A,

B, C, and D are active nodes, then ABCD|A’B’C’D’, ABCD|A’B’, ABCD|D’C’B’A’,

and ABCD|D’C’ are some of the many valid mappings.

Lastly, to avoid using additional buffer space and to limit memory copies, rMPI

receives both the original and the redundant message into the same buffer. We

assume that two identical messages arriving in the same buffer will not “collide” and

that, once both messages have been received, the buffer memory will be in the same

state if only one message had been received. We are not aware of any system today

which does not fulfill this requirement.

4.4 Summary

In this chapter we introduced the design and implementation of the rMPI library

which inserts itself between an application and the MPI library. rMPI allows users
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to allocate additional compute nodes for redundant computation. In the descrip-

tion of the design and implementation of rMPI, we detailed the techniques that are

necessary to maintain MPI semantics, especially managing message ordering on the

active replica protocols. In the next chapter we will use this replication library to

quantify the runtime time overheads of the consistency protocols on a number of

HPC workloads.
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Evaluating State-machine

Replication’s Runtime Overheads

The advantages described in Chapter 3 (i.e. significantly decreased checkpoint fre-

quency and possible soft-error detection and correction) provide a compelling reason

to examine the viability of state machine replication for extreme-scale HPC sys-

tems. Without quantifiable performance benefits compared to other approaches,

however, state machine replication will not be viable for use in exascale systems.

This chapter therefore examines the runtime performance costs of state machine

replication. The remainder of this chapter is organized as follows. In Section 5.1,

we describe the methodology used to evaluate the runtime overheads of replication,

describing our test platform and replica placement options. Section 5.2 presents

an evaluation of the runtime overheads of state-machine replication on a number

of micro-benchmarks and HPC workloads. Section 5.3 characterizes these runtime

overheads for incorporating into our previously described replication model. Finally,

Section 5.4 summarizes the results of this chapter.
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5.1 Methodology

From the discussion in the previous sections it should be clear that rMPI may add ad-

ditional overhead and lengthen the execution time of an application. To empirically

quantify this overhead we ran multiple tests with applications on the Cray Red Storm

system at Sandia National Laboratories compiled with both rMPI and the original

unmodified Cray MPI library. Red Storm is a XT-3/4 series machine consisting of

over 13,000 nodes, with each compute node containing a 2.2 GHz quad-core AMD

Opteron processor and 8 GB of main memory.

Additionally, each node contains a Cray SeaStar [163] network interface and high-

speed router. The SeaStar is connected to the Opteron via a HyperTransport link.

The current generation SeaStar is capable of sustaining a peak unidirectional injec-

tion bandwidth of more than 2 GB/s and a peak unidirectional link bandwidth of

more than 3 GB/s.

To ensure leader and replica are on separate physical nodes, and to avoid memory

and bandwidth bottlenecks on the nodes themselves, we only used one CPU on each

node.

We expect that the rMPI library adds some overhead, even if no redundant nodes

are used, due to the checks whether there are redundant nodes available and the way

we implement the collective operations. We compare this baseline overhead to the

native performance when the rMPI library is not linked in at all. To get a worst case

bound on the cost of rank level replication, a fully redundant configuration is used

for the forward, reverse, and shuffle mappings.
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5.1.1 Replica Placement

To ensure leader and replica are on separate physical nodes, and to avoid memory

and bandwidth bottlenecks on the nodes themselves, we only used one CPU on each

node.

Redundant nodes should be physically as far away from their active node as

possible. The goal is to share as few hardware resources between these nodes as

possible. Co-locating an active and its redundant node on two cores of the same

CPU makes sense from a performance perspective, but not for reliability. Ideally, no

power-supplies, fans, communication channels to other nodes, boards, or chips are

shared. However, that is difficult to achieve in today’s machines. Furthermore, it is

often impossible to assign MPI ranks to specific nodes in the system.

Because of this and because of the impact a given allocation may have on the

performance of an application, we ran our tests in three different modes: forward,

reverse, and shuffle. The first mode, forward, assigns rank N
2
as a redundant node

to rank 0, rank n
2
+ 1 to rank 1, and so on resulting in a mapping like this: ABCD|-

A’B’C’D’. Reverse mode is ABCD|D’C’B’A’, and shuffle mode is a random shuffle

(Fisher/Yates) such as ABCD|C’B’D’A’.

5.2 rMPI Runtime Results

5.2.1 Benchmark Details

To evaluate the performance of the two active rMPI protocols we will present results

of a number of micro-benchmarks and a number of applications. The MPI micro-

benchmarks present in this chapter include: latency, bandwidth, message rate, and

host CPU utilization. See Appendix A for MPI Allreduce(), MPI Reduce(), MPI -
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Bcast(), MPI Barrier(), and MPI Alltoall() micro-benchmark performance results.

Our four representative HPC application workloads are: CTH [164], SAGE [165],

LAMMPS [166,167], and HPCCG [168]. These application represent a range of com-

putational techniques, are frequently run at very large scales, and are key simulation

workloads to both the US Department of Defense and Department of Energy. These

four applications represent different communication characteristics and compute to

communication ratios. Therefore, the overhead of rMPI affects them in different

ways.

1. CTH [164] is a multi-material, large deformation, strong shock-wave, solid

mechanics code developed by Sandia National Laboratories with models for

multi-phase, elastic viscoplastic, porous, and explosive materials. CTH sup-

ports three-dimensional rectangular meshes; two-dimensional rectangular, and

cylindrical meshes; and one-dimensional rectilinear, cylindrical, and spherical

meshes, and uses second-order accurate numerical methods to reduce dispersion

and dissipation and to produce accurate, efficient results. It is used for study-

ing armor/anti-armor interactions, warhead design, high explosive initiation

physics, and weapons safety issues.

2. SAGE, SAIC’s Adaptive Grid Eulerian hydro-code, is a multi-dimensional,

multi-material, Eulerian hydrodynamics code with adaptive mesh refinement

that uses second-order accurate numerical techniques [165]. It represents a

large class of production applications at Los Alamos National Laboratory. It

is a large-scale parallel code written in Fortran 90 and uses MPI for inter-

processor communications. It routinely runs on thousands of processors for

months at a time.

3. LAMMPS [166] is a classical molecular dynamics code developed at Sandia

National Laboratories. For our experiments we use the embedded atom method
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(EAM) metallic solid input script which is used by the Sequoia benchmark

suite. The LAMMPS code and input scripts are provided on the LAMMPS

web site [167]. For this experiment we ran LAMMPS in weak-scaling mode.

4. The HPCCG mini-application, part of the Mantevo project [168], is a simple

sparse conjugate gradient solver designed to capture an important component

of Sandia’s production workload. The majority of its runtime is spent per-

forming sparse matrix-vector multiplies, where the sparse matrix is encoded in

compressed row storage format. The interprocessor communication is minimal,

requiring exchange of nearest neighbor boundary information, in addition to

global MPI Allreduce() operations required for the scalar computations in the

conjugate gradient algorithm.

5.2.2 Micro-benchmark Performance

Because these benchmarks do nothing but transmit messages, we expect them to

show greater overhead than full applications. For the MPI latency tests, we show

the performance overhead for both specific as well as MPI ANY SOURCE receives as each

scenario has different performance characteristics. Again, see Appendix A for more

micro-benchmark performance numbers.

Our bandwidth experiment in Figure 5.1 shows that baseline (rMPI linked in, but

no redundant nodes used) for both protocols does not lower bandwidth appreciably

compared to native; especially at larger message sizes. The parallel protocol redun-

dant runs, on the other hand, shows considerable overhead, especially at smaller

message sizes, showing 60% to 70% slowdown in comparison to native. This slow-

down is identical for each of the three tested mappings (forward, reverse, and shuffle).

The overhead for the parallel runs is due to the overhead of the increased number

of messages required for bundle synchronization. As message size increases the per-
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formance of parallel approaches that of native. The mirror protocol redundant run

performance is also identical among the three mappings, but its 60% slowdown over

native remains nearly constant through the range tested. This halving of bandwidth

is expected and consistent with the fact that we are sending twice as much data

through a given network interface card (NIC).

B
an

dw
ith

D
iff

er
en

ce
 to

 n
at

iv
e

Message Size

native
mirror base

mirror base %

mirror redundant
mirror redundant %

parallel base

parallel base %
parallel redundant

parallel redundant %

0.0  B/s

200.0 MB/s

400.0 MB/s

600.0 MB/s

800.0 MB/s

1.0 GB/s

1.2 GB/s

1.4 GB/s

1.6 GB/s

1.8 GB/s

2.0 GB/s

1  B
10  B

100  B

1 kB
10 kB

100 kB

1 M
B

10 M
B

100 M
B

0 %

20 %

40 %

60 %

80 %

100 %

Figure 5.1: Bandwidth comparison. Native is benchmark without the rMPI library.
Base is with rMPI for each protocol, but no redundant nodes. For this test the
performance of forward, reverse, and shuffle fully redundant runs are equivalent.

Figure 5.2 illustrates the overhead of our MPI latency tests without MPI ANY -

SOURCE. The baseline mapping for the two protocols shows some overhead over native

which is due to the accounting done in rMPI and becomes negligible as message size

increases. The latency overhead for the redundant runs is a factor of 1.5 over native

for smaller messages. For parallel this latency increase is one third that of native

and is due to the extra messages used for synchronization on sends and decreases

with message size. The reason the latency is less than N extra message latencies is

that, assuming no nodes have failed, a sender node first performs the send operation

and then performs the synchronization with replicas in its rank bundle to ensure it
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does not need to fulfill another send. If a node has failed, the performance of parallel

closely matches that of mirror. For mirror, the slowdown with full redundancy is 3
4

that of native. The reason for this increased slowdown is as follows. A receive in

mirror can return once at least one of the two possible receives has completed. Before

the receive can return we must wait for the other receive or cancel it. MPI Cancel()

in our MPICH implementation is an expensive and non-local operation. The current

implementation waits twice a measured round trip time for the other send to arrive.

If it has not been received in that time, the library cancels the other receive and

then returns. Similar to our bandwidth tests, the overhead of the redundant runs is

identical for each of the three replica node mappings tested.
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Figure 5.2: Latency comparison. For this test the performance of forward, reverse,
and shuffle is equivalent.

The coordination overhead between leader and replica nodes becomes more severe

when MPI ANY SOURCE is used. Recall from the discussion in Section 4.2, MPI ANY -

SOURCE causes replica nodes to delay the posting of receives until the leader node

has received its message and informed the redundant node. In Figure 5.3 we see the
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result of this. Latency increases by a factor of 1.5 across the board over native.
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Figure 5.3: Latency comparison using MPI ANY SOURCE. For this test the performance
of forward, reverse, and shuffle is equivalent.

Figure 5.4 illustrate the performance impact of the protocols on MPI message

rate. From the figure we see that for smaller messages mirror is able to achieve a

higher message rate than parallel (with mirror’s rate around half of that of native),

but as message size increases, parallel’s rate approaches to within 10% of native.

Figure 5.5 illustrates the impact on CPU availability for MPI Send() and MPI -

Recv() operations. From the figure we see that the consistency protocols included in

rMPI have little impact on CPU availability. The exception to this is the large mes-

sage MPI Send() operations in Figure 5.5(b). This impact is due to the packetization

engine needed for larger messages.

Overall, we observe that the overheads due to replication is quite high for the

tested micro-benchmarks. For example, MPI bandwidth tests show the mirror pro-

tocol decreases the available bandwidth by half while the parallel protocol decreases
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Figure 5.4: rMPI message rate measurements.

the observed message rate also by half.

5.2.3 Application Performance

In this section we outline the performance impact of replication on real HPC work-

loads. In contrast to the micro-benchmark numbers of the last section, the runtime

overhead of replication is much lower.

LAMMPS

Figure 5.6 shows the performance impact of rMPI with both the mirror and parallel

protocol. The impact of each redundancy protocol is less than 5%, independent of

the nodes used, while the baseline overhead for each is negligible.
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Figure 5.5: Host CPU utilization for send and receive for the two protocols compared
to native and baseline. Native is the benchmark without rMPI; baseline has rMPI
linked in but does not use redundant nodes.
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Figure 5.6: LAMMPS rMPI performance comparison. For both mirror and parallel,
baseline performance overhead is equivalent. For this application the performance of
the forward, reverse, and shuffle fully redundant modes are equivalent.

SAGE

Figure 5.7 shows the rMPI performance for SAGE. Similar to LAMMPS, the base-

line performance degradation is negligible. Also similar to LAMMPS, the parallel

protocol performance remains nearly constant and performance decrease is negligi-

ble in the tested node range; with performance overhead generally less than 5%.

In contrast, full redundancy for the mirror protocol loses about 10% performance

over native, with performance increasing with scale. We attribute the performance

degradation for SAGE to the factor of two increase of large network messages sent

by SAGE and the limited available network bandwidth.
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Figure 5.7: SAGE rMPI performance comparison. For both mirror and parallel
baseline performance overhead is equivalent. For this application the performance of
forward, reverse, and shuffle fully redundant modes are equivalent.

CTH

In Figure 5.8, we see the impact of our consistency protocols for CTH at scale.

Again, baseline for both mirror and parallel shows little performance difference. For

CTH, mirror has the greatest impact on performance with full redundancy. This

impact, which is nearly 20% at the largest scale, is due to CTH’s known sensitivity

to network bandwidth [169] (the greatest of each of the applications tested) and the

increased bandwidth requirements of the mirror protocol. Interestingly, the parallel

protocol version of CTH runs slightly faster then the native versions (around 5-

8%) for forward, reverse, and shuffle replica node mappings. Though further testing

is needed, current performance analysis results suggest this decrease in application

runtime is due to parallel reducing the number of unexpected messages received.
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Figure 5.8: CTH rMPI performance comparison. For both mirror and parallel base-
line performance overhead is equivalent. For this application the performance of
forward, reverse, and shuffle fully redundant modes are equivalent.

HPCCG

Figure 5.9 shows the performance impact of rMPI on the HPCCG mini-application.

In contrast to the other results presented in this section, we present the mirror and

parallel results separately. Though the results presented in Figure 5.9(a) and Fig-

ure 5.9(b) represent the same computational problem, the native results of each vary

due to different node allocations between the two plots. Allocation issues aside, we

see that mirror has very little impact. Parallel on the other hand shows a significant

impact at higher node counts, with slowdowns of around 10% at 1,024 nodes. Also,

in contrast to all the other applications tested, impact from the parallel protocol

is greater than that of mirror. This is because unlike other applications, HPCCG

stresses the system’s message rate and parallel’s synchronization messages are caus-

ing it to reach the maximum messaging rate of a node.
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Figure 5.9: HPCCG rMPI performance comparison. Varying performance for native
and baseline between mirror and parallel protocols is due to different node allocations.

5.3 Analysis of Run Time Overheads

Our results evaluating the runtime overhead of state machine replication show that

the runtime costs of implementing state machine replication for a wide range of pro-
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duction HPC applications at significant scale is minimal. In particular, for each

application either the parallel or mirror protocol provides almost negligible perfor-

mance impact. Examining the best protocol for each application, SAGE has the

highest net overhead, 2.2% at 2048 application-visible nodes. A logarithmic curve

can be fit to the overhead for this worst-case, with the fit curve shown in Equation 5.1.

g(S) =
1

10
log S + 3.67 (5.1)

This curve would result in a 4.9% additional overhead on a projected exascale system

with 200,000 sockets.

For comparison, the worst-case overhead over all protocols can be fit with a curve

shown in Equation 5.2.

g(S) = 3.36 logS − 5.31 (5.2)

This worst-case curve would result in 35.7% additional overhead on a projected

exascale system with 200,000 sockets.

Figure 5.10 shows these overheads along with the corresponding application slow-

down measurements. In Chapter 6 we incorporate these measured run-time over-

heads into our state machine replication model to examine the merit of replication

for exascale systems.

5.4 Summary

In this chapter we presented the run time protocol overheads for rMPI, a MPI li-

brary that enables transparent, user-level rank level replication. Using this library
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Figure 5.10: Best-case (Equation 5.1) and worst-case (Equation 5.2) rMPI run time
protocol overhead fit functions and corresponding data from CTH, SAGE, and
LAMMPS.
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we showed that while the protocol overheads are quite high for a number of com-

munication micro-benchmarks, there is a relatively low overhead protocol choice for

each of the tested applications. In the following chapter we incorporate this overhead

in our replication model to more accurately examine the costs associated with state

machine replication.
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Replication Analysis

6.1 Overview

In this chapter, we combine the results from the previous sections into a more com-

plete analysis of the costs and benefits of state machine replication for HPC systems.

By doing so, we examine additional machine parameters and their impact on the

viability of state machine replication, particularly variations in available I/O system

bandwidth and failure rates.

In the remainder of this chapter, all results assume software runtime overheads as

shown in Equation 5.1 and Equation 5.2; efficiency results incorporate the factor of

two reduction for state machine replication due to the required redundant hardware.

Unless otherwise stated, we also continue to assume checkpoint and restart times of

15 minutes as in previous chapters.

We describe our comparison approach in Section 6.2. We then extend our model-

based analysis, incorporating the measured runtime overheads, node failure rates,

and I/O commit bandwidth rates in Section 6.3, Section 6.4, and Section 6.5. Sec-
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tion 6.6 further extends our model to account for triple-modular redundancy and

and higher replica count. In Section 6.7 we introduce a simulation-based analysis

of state-machine replication which allows for more realistic failure distributions. We

conclude the chapter in Section 6.8.

6.2 Comparison Approach

Our primary performance evaluation criteria is as follows: at what node counts,

if any, does state machine replication provide quantitative performance advantages

over past approaches particularly in terms of system utilization, after accounting for

the overheads of state machine replication. If, for example, state machine replication

achieves 46% utilization at a given system socket count and another technique only

achieves 40% system utilization, we regard state machine replication as superior at

that point.

We use traditional checkpoint/restart fault tolerance as the baseline technique

against which to compare because its performance characteristics are well known and

understood. We believe that comparing against a well-understood baseline will facil-

itate future comparisons against other proposed exascale fault tolerance techniques,

as their costs and benefits at scale are more fully quantified. A brief qualitative

comparison with several such techniques is provided in Chapter 2.

6.2.1 Assumptions

Because we are comparing a new technique on projected hardware systems, our

comparisons make a number of assumptions that are important to make explicit.

We assume:
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1. Fully replicated hardware redundancy for all applications, resulting in a maxi-

mum possible efficiency for state machine replication at 50%.

2. The MPI library is the only potential source of non-determinism in the appli-

cation.

3. Machines suffer from only crash failures, and not from more general failures,

from which checkpoint/restart may not be able to recover.

4. System MTTI decreases linearly with increased system socket count as observed

in past study results [18].

6.3 Combined Hardware and Software Overheads

As a first study, we reexamine state machine replication under exponential failure

distributions with a 5 year per-socket MTTI as shown in Chapter 3, but this time

including projected software runtime overheads from Section 5.2. As we can see

in Figure 6.1, these results are similar to those in Figure 6.1, with the break-even

point for state machine replication shifted to a somewhat higher socket count due to

the additional software runtime overheads. Despite this slight shift, state machine

replication still outperforms traditional checkpoint/restart at socket counts currently

projected for use in exascale systems.

6.4 Scaling at Different Failure Rates

While the 5 year per-socket MTBFs used above are based on well-known studies of

large-scale systems, the challenges of exascale systems make changes to these relia-

bility statistics likely. For example, more reliable nodes could be deployed to address
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Figure 6.1: Modeled application efficiency with and without replication including
worst-case rMPI run time overheads. Shaded region corresponds to possible socket
counts for an exascale class machine [12].
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fault tolerance concerns, or power conservation, miniaturization, or cost concerns

could lead to a reduced per-socket MTBF. Thus, we also examine the viability of

state machine replication over a range of per-socket MTBFs.

This evaluation focuses on determining the break-even point in number of system

sockets for state machine replication compared to traditional checkpoint/restart.

This is the number of sockets above which state machine replication is more efficient

than traditional checkpoint/restart, even accounting for replication’s software and

hardware overheads. At socket counts greater than or MTBFs less than this break-

even point, replication is preferable; at socket counts less than this or MTBFs above

it, traditional checkpoint/restart is preferable.

Figure 6.2 shows these results for per-socket MTBFs up to 100 years; socket

counts and per-socket MTBF commonly discussed for exascale systems (socket counts

above 25,000 and MTBFs between 4 and 50 [12]) are shaded; the shaded area above

and to the left of the break-even curve represents the portion of the exascale design

space in which state machine replication is beneficial.

These results show that state machine replication is viable for a large range

of socket MTBFs and node counts in the exascale design space, but not the en-

tire space. In particular, state machine replication performs worse than traditional

checkpoint/restart for low socket-count systems with MTBFs greater than about 10

years. For socket MTBF above 50 years, state machine replication is outperformed

by traditional checkpoint/restart at all expected socket counts.

6.5 Scaling at Different Checkpoint I/O Rates

We also examine the viability of replication at a wide range of checkpoint I/O rates.

Because checkpoint I/O is an area of active study, including work on a wide range of
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Figure 6.2: Modeled replication break-even point assuming a constant checkpoint
time (δ) of 15 minutes. Shaded region corresponds to possible socket counts and
MTBFs for an exascale class machine [12]. Note that above the line within this
region is where replication has significantly lower overheads compared to traditional
checkpoint/restart.

hardware and software techniques to improve its performance for exascale systems

(as described previously in Chapter 2), understanding the potential impact of this

research on exascale fault tolerance approaches is critical.

For this analysis, we use recent modeling work which extends Daly’s checkpoint

modeling work to account for how variations in checkpoint system throughput impact

checkpoint times and system utilization [6]. We assume each socket in the system

has 16 GB of memory associated with it, and again examine the break-even point

for replication over checkpoint/restart at a range of checkpoint I/O bandwidths and

socket MTBFs. We choose an aggressive range of bandwidths varying from 500
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GB/sec to 30 TB/sec to fully understand the impact of dramatic increases in I/O

rates on the viability of replication.
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Figure 6.3: “Break-even” points for replication for various checkpoint bandwidth
rates. The shaded region corresponds to possible socket counts and socket MTBFs
for exascale class machines [12]. Above the line within this region is where replication
has significantly lower overheads compared to traditional checkpoint/restart. State
machine replication is a viable approach for most checkpoint bandwidths, but with a
checkpoint bandwidth greater than 30 TB/sec, replication is inappropriate for most
of the exascale design space.

Figure 6.3 shows the results of this analysis. Replication outperforms checkpoint-

ing for the vast majority of the exascale design space at checkpoint I/O bandwidths of

1 TB/sec or less. However, beginning at I/O bandwidths of approximately 5 TB/sec,

checkpoint/restart becomes competitive for a substantial fraction of the design space,

particularly systems with high per-socket MTBFs and low numbers of sockets. At

checkpoint bandwidths of 30 TB/sec or higher, several orders of magnitude faster
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than current I/O systems, checkpoint/restart is preferable across a large majority of

the design space.

6.6 Triple Module Redundancy and Beyond

In this section, we further expand our model for replica counts greater than two. To

approximate the average number of faults, we use the indicator method described

previously in Equation 3.7. As we showed earlier, this method slightly overestimates

the average number of absorbed failures by approximately 15%1. The data in this

section accounts for this overestimation. As in the previous tests, we include the

software overheads described in Equation 5.1. For replica counts greater than two,

we linearly scale the overheads with the number of replicas. We have verified this

overhead on small-scale application runs.

Figure 6.4, shows the “break-even” point for replica counts between two and ten.

Similar to previous models, we assume a 168 hour application with a checkpoint time

of 15 minutes. Also in this figure, the shaded region corresponds to the possible node

counts and socket MTBFs for proposed exascale class machines. From the figure we

see that at replica counts greater than two, state-machine replication still has better

efficiency than non-redundant scenarios. This is especially true for system designs

with lower socket MTBFs and higher socket counts.

1As described in Chapter 3, this difference is due to the replacement assumption in the
birthday problem
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Figure 6.4: “Break even” points for replication for various numbers of replicas and a
checkpoint time (δ) equal to 15 minutes. The shaded region corresponds to possible
socket counts and socket MTBFs for exascale class machines [12]. Note that above the
line within this region is where replication has significantly lower overheads compared
to traditional checkpoint/restart.

6.7 Simulation-Based Analysis

6.7.1 Overview

In this section, we use a simulation-based approach to expand the results from the

previous sections into a more complete analysis of the costs and benefits of state

machine replication for HPC systems. This approach allows us to examine real

failure distributions derived from studies of failures of real HPC systems, in addition

to the exponential distributions assumed analytical models such as those of the Daly

model or the birthday problem.
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In the remainder of this section, all results assume software runtime overheads

as shown in Equation 5.1; efficiency results also include a factor of two reduction for

replication because of the required redundant hardware. Unless otherwise stated, we

continue to assume checkpoint and restart times of 15 minutes.

6.7.2 Non-Exponential Failure Distributions

In this section, we examine the viability of replication with more realistic failure

distributions. For failure information, we use numbers from a recent study of failures

on two BlueGene supercomputer systems described in 3.4.3 [11].

To examine the impact of these failure distributions, we build on the results of

the previous subsection and examine how the efficiency of replication and check-

point/restart change under Weibull failures assuming a fixed 1 TB/sec checkpoint

bandwidth and 16 GB of memory per socket. Also included in these plots is the

runtime overheads associated with replication. Once again we note that the systems

from which these distributions were measured experienced a significant number of

I/O system failures, and it is unclear how these failures should be properly scaled

up to larger systems. As a result, we focus on how Weibull distributions change the

efficiency of replication and checkpoint/restart approach as opposed to the specific

efficiency crossover point.

Figure 6.5 and Figure 6.6 present the impact of these failure distributions on both

a replication-based approach and a purely checkpoint-based approach. In Figure 6.5

we note that node counts greater than 100,000 sockets is not shown as the MTTI for

the application is less than the checkpoint time (δ), so little application progress is

made in a checkpoint interval.

These results show that Weibull failures experienced by real-world systems result

in a much more challenging fault tolerance environment, reducing the effectiveness

88



Chapter 6. Replication Analysis

%
 E

ffi
ci

en
cy

Application-visible System Sockets

No Replication
Replication

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1000

2000
5000

10000

20000

50000

100000

200000

(a) Exponential, Θ = 4 years

%
 E

ffi
ci

en
cy

Application-visible System Sockets

No Replication
Replication

10

20

30

40

50

60

70

80

90

100

10 20 50 100
200

500
1000

2000
5000

10000

20000

50000

100000

200000

(b) Weibull, Θ = 4 years, shape = 0.469

Figure 6.5: Simulated application efficiency with and without state machine replica-
tion for a 168-hour application, 4-year per-socket MTBF (Θ), and 1TB/sec. check-
point bandwidth with failure rate drawn from exponential and Weibull distribu-
tions [11]. In the replication case we have two replicas per process rank. The shaded
region corresponds to possible socket counts for an exascale class machine [12].
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Figure 6.6: Simulated application efficiency with and without state machine replica-
tion for a 168-hour application, 12-year per-socket MTBF (Θ), and 1TB/sec. check-
point bandwidth with failure rate drawn from exponential and Weibull distribu-
tions [11]. In the replication case we have two replicas per process rank. The shaded
region corresponds to possible socket counts for an exascale class machine [12].
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of both replication and traditional checkpointing approaches. However, replication is

less severely impacted than traditional checkpointing, again pointing to the potential

more viability of a replication-based fault tolerance approach for exascale systems.

6.8 Summary

In this chapter, we evaluated the suitability of replication, an approach well-studied

in other fields, as the primary fault tolerance methods for upcoming exascale high

performance computing systems. We used a combination of modeling, empirical

evaluation, and simulation to study the various costs and benefits of state machine

replication over a wide range of potential system parameters. This included both the

hardware and software costs of state machine replication for MPI applications, and

covered different failure distributions, system mean time to interrupt ranges, and

I/O speeds.

Our results show that a state machine replication approach to exascale resilience

outperforms traditional checkpoint/restart approaches over a wide range of the ex-

ascale system design space, though not the entire design space. In particular, state

machine replication is a particularly viable technique for the large socket counts and

limited I/O bandwidths frequently anticipated at exascale. However, replication-

based approaches are less relevant for designs that have per-socket MTBFs of 50

years or more, less than 50,000 sockets, and checkpoint bandwidths of 30 terabytes

per second.

Outside of its performance benefits, using replication as the primary exascale

fault tolerance methods provides a number of other advantages. First among these

is that it can be used to detect and aid in the recovery from faults that corrupt system

state instead of crashing the system, sometimes referred to under the banner of silent

errors. Checkpoint-based approaches, on the other hand, potentially preserve such

91



Chapter 6. Replication Analysis

errors. In addition, while the extra hardware nodes needed to support replication-

based approaches can also be used to increase the capacity of exascale systems when

it runs more but smaller (e.g. 1-10 petaflop-scale) jobs.
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Incremental Checkpointing

7.1 Introduction

As stated in previous chapters, disk-based coordinated checkpoint/restart has been

the dominant fault tolerance mechanism in high performance computing systems for

the last 30 years. Checkpoint performance impacts scalability of large-scale appli-

cations to such a degree that many capability applications have their own custom

application-specific checkpoint mechanism to minimize the saved checkpoint state

and therefore the time to checkpoint. While this approach minimizes the application

state that must be written to disk, it requires intimate knowledge of the applica-

tion’s computation and data structures, and is typically difficult to generalize to

other applications.

Incremental checkpointing [41, 70, 72], described in detail in Chapter 2, is an

application independent method that attempts to reduce the size of a checkpoint,

and therefore the time to write a checkpoint, by saving only differences in state

from the last checkpoint, thereby attempting to save the true incremental working

set [69] of the application. The underlying assumption of this technique is that the
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mechanism used to determine the differences in state has significantly lower overhead

than the time to save the additional data to stable storage.

Current incremental methods have failed to achieve dramatic decreases in check-

point size because of a reliance on page protection mechanisms to determine which

address ranges have been written, or dirtied, during the checkpoint interval [41].

Relying solely on page-based mechanisms forces such an approach to work at a gran-

ularity of the operating systems page size. Even if only one byte in a page is written,

the entire page is marked as dirty and must be saved. Furthermore, if identical values

are written to a location, that page is still marked as dirty. These problems are also

compounded by the increasing maximum page sizes of modern processors and the

increased performance for HPC applications on these larger page sizes.

To address these limitations, we introduce a hybrid incremental checkpointing

approach that uses page protection mechanisms, a hashing mechanism offloaded to

GPUs, and MPI hooks to determine the locations within a page that have changed.

GPUs reduce the overhead of the hash calculation. Using real HPC workloads, this

chapter compares the performance of this technique against page protection-based in-

cremental systems and highly optimized, application-specific checkpoint techniques.

Our results show that our approach is able to dramatically reduce system check-

point sizes compared to previous incremental checkpointing systems; in some cases

approaching the checkpoint sizes of hand-tuned application-specific checkpointing

systems.

This chapter is organized as follow. First in Section 7.2, we define a model to

illustrate when this hash-based approach will pay off. In Section 7.3, we describe the

design and implementation of the libhashckpt incremental checkpointing library.

We show the resulting checkpoint state compression from this technique using a

number of HPC capability workloads in Section 7.4. In addition, we compare the

compression results against an optimal application-based checkpointing mechanism.
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In Section 7.5, using a number of hash algorithms, we show the costs of performing

this hashing on a CPU versus the speedup seen using a GPU. Section 7.6 uses the

aforementioned model and measured results to present the viability of this technique

using a GPU and CPU for possible systems in the exascale design space. Finally,

Section 7.7 concludes this chapter.

7.2 A Model for the Viability of Hash-Based In-

cremental Checkpointing

To evaluate the viability of this method we compare the performance of this hash-

based mechanism with that of a strictly page-based approach. This hash-based

approach outperforms a page-based approach when the reduction in the checkpoint

size for the hash method outweighs the cost of computing the hashes of the modified

pages. More specifically, this approach is viable when the sum of the time to hash

modified memory (Thash), plus the time to write the application blocks that have

been determined changed (Twrite hash), is less than the time to write the memory that

hash been determined changed using a strictly page-based approach (Twrite whole)
1.

In more detail we have:

Thash + Twrite hash < Twrite whole

(7.1)
( |checkpoint|

βhash

)

+

(

(1− compression)× |checkpoint|
βckpt

)

<
|checkpoint|

βckpt

(7.2)

1Plank et al pose a similar concept [170]
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Where:

|checkpoint| is the size of page-based checkpoint

compression is the percent reduction of hash-based approach in comparison to the
page-based method

βhash is the per-process hash rate

βckpt is the per-process checkpoint commit rate

This equation can be reduced to:

βckpt

βhash

< compression (7.3)

The maximum per-process checkpoint commit rate (βckpt) is generally known for

many HPC platforms. Therefore, we must measure the hashing rate (βhash), which

is specific to both a specific platform and hashing algorithm; and the compression

percentage, which will be specific to a particular application. In the next section, we

use the libhashckpt library to measure these quantities.

7.3 Libhashckpt: Hash-based Incremental Check-

pointing

7.3.1 Overview

The hash-based incremental checkpointing mechanism described in this work func-

tions as follows. While the application is running, the library uses the page-protection

96



Chapter 7. Incremental Checkpointing

mechanism to mark those virtual memory pages that have been written in the check-

point interval as potentially dirty. To support MPI applications, the library also

intercepts receive calls and marks message buffers as dirty, identifying them as can-

didates to be checked by the hashing mechanism. These message buffers require

marking because changes in memory from user-level network hardware is not subject

to the processor’s page protection mechanisms.

When a checkpoint is requested, the library hashes all blocks corresponding to

potentially dirty pages, comparing the key with previously stored values, if they

exist. If no key exists, or if the key has changed, the block is marked to be included

in the checkpoint and excluded otherwise. If the node contains a GPU, potentially

dirty blocks are copied down to the GPU and the computed keys are copied up to

host memory. Finally, once the hash calculation has completed, all blocks that have

been marked as changed by the library are then saved to stable storage for later

retrieval, if needed.

7.3.2 Implementation Details

To evaluate the merit of this hash-based approach, we created the libhashckpt

hash-based, hybrid incremental checkpointing library. libhashckpt is based on the

libckpt library [72], now referred to as clubs [171]. Clubs is a transparent, user-

level, checkpoint library for Unix based systems. It contains a number of checkpoint-

ing optimizations including:

• Virtual memory page-protection based incremental checkpointing;

• Forked checkpointing; and,

• User-directed checkpointing which allows the user to include or exclude portions

of the processes address space in the checkpoint.
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We added the following functionality to this library. Firstly, we added a frame-

work for calculating and storing hash keys of arbitrary block size. The block size

can be adjusted to be larger or smaller than the native page size. We also modified

the library to intercept MPI receive calls using the MPI profiling layer found in most

modern MPI libraries. Also, we added an engine for offloading this hash calcula-

tion to graphics processing units, if any are present. Finally, as described in more

detail in Chapter 2, with any hash-based approach, aliasing is a concern. Aliasing,

also referred to as collisions, comes about when modifications to a block are just

such that the key values are identical. The danger being that the library will not

save modified application data, thereby corrupting the application in the event of

a restart. Previous work which looked at aliasing [27] showed that the application

most similar to many HPC workloads, a matrix multiplication workload, showed no

aliasing issues for the non-collision resistant algorithms XOR and CRC16.

7.3.3 Hash/Checksum Algorithms

In this section we briefly describe each of the checksum and hash algorithms used in

this work. These algorithms vary greatly in both their collision resistance and their

computational complexity, from the relatively simple XOR and CRC32 checksums to the

complex, collision resistant, and cryptographically secure MD5 and SHA256. In later

sections we compare the performance of these algorithms using CPUs and GPUs.

Rotating XOR

The rotating XOR function, shown in Listing 7.1, is a simple hash algorithm that

repeatably XOR input data and folds this input data with individual bytes of the

running 32 bit output value. This folding and mixing of the input data gives the

rotating hash a much better distribution than a standard XOR. The advantage of this
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method is its simple computation. Though this folding step sufficiently mixes the

input data, this algorithm generally is not considered secure enough to be used for

cryptographic applications.

Listing 7.1: Rotating XOR Algorithm

1 #include <stdint.h>
2
3 uint32 t
4 rotating xor( void ∗addr, int len )
5 {
6 unsigned char ∗p = addr;
7 uint32 t h = 0;
8 int i ;
9

10 for( i = 0 ; i < len ; i ++ )
11 h = ( h << 4 ) ˆ ( h >> 28 ) ˆ addr[ i ];
12
13 return h;
14 }

ADLER32

Invented by Mark Adler, ADLER32 is a cyclic redundancy checksum algorithm de-

fined in RFC1950 [172]. This checksum algorithm is part of the widely-used zlib

compression library as well as the rsync data transfer and synchronization utility.

The ADLER32 checksum, shown in Listing 7.2, is obtained by concatenating two

16-bit checksums A and B into one 32 bit output. In this scheme, A is the sum of

all bytes in the block and B is the sum of the individual values of A from each step.

The ADLER32 checksum is considerably faster to compute on most platforms and

slightly less collision resistant than a CRC32. ADLER32’s collision issues occur for very

small block sizes, as the sum of A does not have the opportunity to wrap around.

Similar to XOR, an ADLER32 checksum can be easily forged and therefore generally

not considered appropriate for application which require collision resistance.
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Listing 7.2: ADLER32 Algorithm
1 #include <stdint.h>
2 #define BASE 65521UL /∗ largest prime smaller than 65536 ∗/
3 #define NMAX 5552 /∗
4 ∗ NMAX is the largest n such that
5 ∗ 255n(n+1)/2 + (n+1)(BASE−1) <= 2ˆ32−1
6 ∗/
7
8 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
9 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);

10 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
11 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
12 #define DO16(buf) DO8(buf,0); DO8(buf,8);
13
14 #define MOD(a) a %= BASE
15
16 uint32 t
17 adler32( void ∗addr, int len )
18 {
19 uint32 t s1;
20 uint32 t s2;
21 int k;
22
23 s1 = ( ∗adler ) & 0xffff ;
24 s2 = ( ( ∗adler ) >> 16 ) & 0xffff;
25
26 if ( buf == NULL )
27 return ∗adler = 1L;
28
29 while( len > 0 ){
30 k = ( len < NMAX ) ? ( int )len : NMAX;
31 len −= k;
32
33 while( k >= 16 ){
34 DO16( buf );
35 buf += 16;
36 k −= 16;
37 }
38
39 if ( k != 0 ){
40 do{
41 s1 += ∗buf++;
42 s2 += s1;
43 } while( −−k );
44 }
45
46 MOD( s1 );
47 MOD( s2 );
48 }
49
50 return ( ∗adler = ( ( s2 << 16 ) | s1 ) );
51 }

CRC32

A cyclic redundancy check (CRC32), shown in Listing 7.3 is 32 bit hashing algorithm

commonly used for error detection and correction on many storage and network

devices such as Ethernet. CRC32’s have the advantage of being simple to implement

and are well suited in detecting contiguous error symbols. Typically, a CRC32 can

detect a fraction (1− 2−n) of all burst errors larger than n bits in length.

A cyclic redundancy check algorithm requires a generator polynomial. This poly-
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nomial is the divisor of an operation with the value to be hashed treated as the

dividend. The remainder of this polynomial division is the return value, or referred

to as the CRC.

Similar to the other methods described thus far in this section, CRC32’s are not

suitable for cryptographic applications. Most notably, due to the linear nature of

a CRC, a message can easily be modified in such a way to leave the CRC output

unchanged and therefore is considered not very resistant to collisions.

Listing 7.3: CRC32 Algorithm
1 #include <stdint.h>
2
3 #define POLYNOMIAL 0xD8
4 #define WIDTH (8 ∗ sizeof( uint32 t ))
5 #define TOPBIT (1 << (WIDTH − 1))
6
7 uint32 t crcTab[ 256 ];
8
9 void

10 crc32 init ( void )
11 {
12 uint32 t remainder;
13
14 for( int div = 0 ; div < 256 ; div++ ){
15 remainder = div << ( WIDTH − 8 );
16 for( uint8 t bit = 0 ; bit > 0 ; bit−− ){
17 if ( remainder & TOPBIT )
18 remainder = ( remainder << 1 ) ˆ POLYNOMIAL;
19 else

20 remainder = ( remainder << 1 );
21 }
22 crcTab[ div ] = remainder;
23 }
24 return

25 }
26
27 uint32 t
28 crc32( uint8 t const ∗addr, int nbytes )
29 {
30 uint8 t data;
31 uint32 t remainder = 0;
32
33 for( int byte = 0 ; byte < nbytes; byte++ ){
34 data = addr[ byte ] ˆ ( remainder >> ( WIDTH − 8 ) );
35 remainder = crcTab[ data ] ˆ ( remainder << 8 );
36 }
37
38 return remainder;
39 }

MD5

The fifth Message-Digest Algorithm (MD5) [173] is a widely used cryptographic hash

function designed by Ron Rivest. Specified in RFC1321 [174], MD5 produces a 128-bit

hash value and is commonly used to check data integrity. Though designed to be
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collision resistant, a collision attack currently exists for MD5. The fact this attack

exists has no influence on its choice for an appropriate hashing method, as while

collisions can be computed, they rarely occur and are difficult to generate.

SHA256

The second Secure Hash Algorithm (SHA256) [175] is one of a family of crypto-

graphic hash function which includes SHA224, SHA256, SHA384, SHA512, each of

which varies by the hash digest size (224, 256, 384, and 512 bits). This set of func-

tion was designed by the National Security Agency in response to a flaw found in

the SHA-1 secure hash.

The SHA-2 family of functions are included in a number of widely-used secu-

rity applications and protocols, including TLS [176] and the Secure Sockets Layer,

PGP [177], SSH [178], S/MIME [179], and IPsec [180]. Like all well designed cryp-

tographic hashes, they are highly collision resistant.

7.4 State Compression Measurement

In this section, we present the compression performance of this hash-based approach

using the libhashckpt library described in the previous section. First, we examine

the results of hashing versus page-based protection mechanisms for determining the

percentage of application memory that has actually changed. Then, we examine

the performance of this library with the a number of simulation workloads, compar-

ing this hash-based approach with both standard page protection-based incremental

checkpointing and an application’s specific checkpoint mechanism.
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7.4.1 Applications and Platform

To evaluate the compression achieved by hash-based checkpointing, we present re-

sults from a number of key HPC applications; CTH [164], LAMMPS [166, 167],

SAGE [165], and HPCCG [168]. See Section 5.2.1 for a complete description for

these four important high-performance computing workloads.

Each of these applications contain highly-optimized application-specific check-

point mechanisms that will be used for comparison with the methods outlined in

this paper. These application tests were conducted on the Cray Red Storm sys-

tem [181] at Sandia National Laboratories. For these application runs, the hashing

was performed by a spare on-node CPU core.

7.4.2 Hash-based Dirty Data Detection

The key feature that libhashckpt exploits is finer-grained detection of dirtied blocks

than is currently possible using mechanisms based solely on page protection mecha-

nisms. To examine the overall potential of such a hash-based approach, we first used

libhashckpt to examine what portion of an application’s memory actually changed

(using fine-grained hashing) versus the percentage that a pure page protection-based

mechanism would indicate was changed. In this section we show the average percent

of memory written using a page protection-based mechanism. In addition we show

the average, minimum, and maximum percentage of that changed memory that is

determined changed using a hash-based approach.

Figures 7.1 – Figure 7.4 show the percentage of memory that our hash-based

mechanism determined changed at each 15 minute checkpoint interval versus the

percentage that a page protection mechanism determined were dirtied. For each of

these tests, we use a 512 byte block size on an operating system with 4KB pages.
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Each machine page therefore, contains 8 hash blocks.

In Figure 7.1, we see that while nearly all of CTH’s allocated memory is written

in a checkpoint interval, a very small percentage of that memory actually changes.

This small percentage of change is an artifact of the simulation problem. The ap-

plication uses thresholding such that, in a small simulation-time interval, sections of

the simulation do not change.
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Figure 7.1: Percent of application memory change detected using a hash-based incre-
mental checkpointing mechanism for the CTH exploding pipe problem. The shaded
region represents the average percent of memory written to using a page-protection
based mechanism.

In contrast to the CTH results, the amount of data changed for LAMMPS, shown

in Figure 7.2, is nearly identical to the data written. This large data change is due to

the fact that the largest data structure in LAMMPS is the neighbor structure. This

structure holds the distance between all atoms and is used for calculating forces. As

the simulation progresses, this structure continuously changes as atoms move around.

In Figure 7.3, we see that the performance of SAGE sits somewhere between that
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Figure 7.2: Percent of application memory change detected using a hash-based in-
cremental checkpointing mechanism for the LAMMPS EAM problem. The shaded
region represents the average percent of memory written to using a page-protection
based mechanism.

of CTH and LAMMPS. For some nodes in this SAGE problem, much of the node’s

data changes in the checkpoint interval. For other nodes, however, the amount of

data on a node that changes is much lower than the total amount a page-based

mechanism determines changed. The average amount of data changed across all

nodes and for all checkpoints is around 55%.

Lastly, Figure 7.4 shows the results of HPCCG which are similar to LAMMPS,

where most of the data written is different than what was there previously. In

contrast to LAMMPS, as HPCCG converges an increasingly smaller percentage of

the written memory changes.

These results demonstrate the potential accuracy advantage a hash-based in-

cremental checkpointing approach can provide over a purely page protection-based

mechanism. On the other hand, these results also show that the potential benefits
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Figure 7.3: Percent of application memory change detected using a hash-based in-
cremental checkpointing mechanism for SAGE application. The shaded region rep-
resents the average percent of memory written to using a page-protection based
mechanism.

are also highly application-dependent.

7.4.3 Checkpoint File Size Comparison

Based on the results in the previous section, we can now examine the resulting differ-

ence in checkpoint sizes between the two incremental checkpointing approaches (pure

page protection vs. libhashckpt’s hybrid page protection/hashing scheme) for both

LAMMPS and CTH. These two application are chosen due to there highly optimized

application-based mechanisms. We also compare the size of these checkpoints with

those generated by the application-specific mechanisms. These application specific

methods are highly optimized, and, for the purpose of this work, we view these

checkpoint sizes as a file size optimum.
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Figure 7.4: Percent of application memory change detected using a hash-based in-
cremental checkpointing mechanism for HPCCG. The shaded region represents the
average percent of memory written to using a page-protection based mechanism.

Table 7.1 shows a comparison in per-process checkpoint sizes for our two applica-

tions. We see that for CTH, libhashckpt’s hash-based method dramatically reduces

the size of system-based incremental checkpoints based solely on a page protection

Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 7.1: Per-process checkpoint size for CTH and LAMMPS. This table con-
tains the size of the checkpoint using standard page protection-based system-level
incremental checkpointing (VM CKPT), libhashckpt’s hybrid approach, and an
application-specific checkpointing approach (App CKPT). For the latter two columns
the number in parenthesis is the percent reduction in size when compared to a system-
based incremental checkpoint. The VM CKPT and Hash CKPT checkpoints contains
data from both the application as well as other libraries linked with the application,
for example MPI library data and its associated buffers.
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mechanism. Custom application-specific checkpointing mechanism does better still,

but our hybrid scheme results in checkpoints that are only 35% larger than this

highly-optimized approach. One reason our hash-based library is larger than the

application-specific method has to do with the fact that the application checkpoint

contains only application data, while the other methods shown save state from the

application as well as the libraries linked with the application, most notably the MPI

library and its associated data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identical in

size for LAMMPS, with application-specific checkpointing routines offering a 75%

reduction in checkpoint sizes. This is because the application-specific checkpoint-

ing mechanism in LAMMPS can completely avoid writing neighbor structures to

checkpoints because they can be reconstructed at application restart. System-based

methods do not have the application-specific knowledge needed to do this.

7.5 Hashing Costs

In the previous section we used a spare on-node CPU to perform the hashing of

modified pages. This hashing can be very expensive on a host CPU. This high cost

determines the possible merits of this technique. As we specified in Equation 7.2, this

technique is viable if the hashing costs outweigh the decrease in state compression.

Therefore, we are interested in methods to speed up the hashing. The method used

to lower the overheads in this work is to offload the hash calculation to GPUs.

In this section we measure and compare the GPU vs CPU performance for a

number of hash signature algorithms. For the hashing results in this section, we

compare the performance of the Opteron processor on Red Storm [181] against that

of a NVIDIA Tesla C1060 and a NVIDIA Tesla D2090 based on the “Fermi” archi-

tecture. For each of the tests we did the following. We take one of the checkpoints
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for the CTH application run described earlier in the chapter. In this checkpoint we

send all the written pages to be hashed either by the CPU for the GPU. For the

CPU numbers we use the Libgcrypt [13] implementations of XOR, ADLER32, CRC32,

MD5, and SHA256 algorithms. The GPU numbers presented in the following section

represent the best measured for a block size varying the number of threads and the

size of the overlap of the concurrent copy down to the card and computation for

asynchronous CUDA [182] kernels. In addition, these GPU numbers include the

time to copy data down to the GPU as well as the time to copy computed keys to

host memory.

7.5.1 Rotating XOR

Figure 7.5 compares GPU vs. CPU performance of an XOR calculation for varying

block sizes. The GPU numbers presented in this plot represent the best measured

for a block size varying the number of threads and the size of the overlap of the

concurrent copy down to the card and computation. Also, these GPU numbers

include the time to copy data down to the GPU as well as the time to copy computed

keys to host memory. With a per-process hashing rate between 2800 and 1700

MB/sec for the Fermi GPU card, the GPU-based data rates greatly exceed the per-

process commit rate to stable storage for many large-scale systems. Also, for larger

block sizes, including sizes beyond what is shown here, the CPU results exceed that

of the GPU cards.

7.5.2 CRC32

Figure 7.6 compares GPU vs. CPU performance of an CRC32 calculation for varying

block sizes. The GPU numbers presented in this plot represent the best measured

for a block size varying the number of threads and the size of the overlap of the
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Figure 7.5: A comparison of rotating XOR hashing rates for CPU and GPU. GPU
rate includes both the copying of data to be checksummed down to the cards local
memory as well as the copying of the computed keys from the card to host memory.
The GPU data is the best recorded for a block size varying the number of threads
and the amount of overlap in copy and computation. The CPU test use the XOR

algorithm described previously

concurrent copy down to the card and computation. Also, these GPU numbers

include the time to copy data down to the GPU as well as the time to copy computed

keys to host memory. With a per-process hashing rate between 2200 and 700 MB/sec

for the GPU cards, the GPU-based data rates greatly exceed the per-process commit

rate to stable storage for many large scale systems. Also, even though the Fermi cards

have twice as many resources, for block sizes larger than 64 bytes the performance

of the two are nearly the same.

110



Chapter 7. Incremental Checkpointing

R
at

e 
(M

B
/s

ec
)

Block Size (bytes)

GPU Fermi
GPU Tesla

CPU

 0

 500

 1000

 1500

 2000

 2500

8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K

Figure 7.6: A comparison of CRC32 hashing rates for CPU and GPU. GPU rate
includes both the copying of data to be checksummed down to the cards local memory
as well as the copying of the computed keys from the card to host memory. The
GPU data is the best recorded for a block size varying the number of threads and
the amount of overlap in copy and computation. The CPU numbers are using the
Libgcrypt [13] CRC32 hashing algorithm.

7.5.3 ADLER32

Figure 7.7 compares GPU vs. CPU performance of an ADLER32 calculation for varying

block sizes. The GPU numbers presented in this plot represent the best measured

for a block size varying the number of threads and the size of the overlap of the

concurrent copy down to the card and computation. Also, these GPU numbers

include the time to copy data down to the GPU as well as the time to copy computed

keys to host memory. With a per-process hashing rate between 3200 and 2000

MB/sec for the Fermi GPU card, the GPU-based data rates greatly exceed the per-

process commit rate to stable storage for many large-scale systems. Also, for larger

block sizes the CPU results exceed that of the Tesla GPU card. For block sizes larger
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Figure 7.7: A comparison of ADLER32 hashing rates for CPU and GPU. GPU rate
includes both the copying of data to be checksummed down to the cards local memory
as well as the copying of the computed keys from the card to host memory. The
GPU data is the best recorded for a block size varying the number of threads and
the amount of overlap in copy and computation. The CPU numbers are using the
Libgcrypt [13] ADLER32 hashing algorithm.

than those show in this figure, the CPU performance exceeds even that of the Fermi

card.

7.5.4 MD5

Figure 7.8 compares GPU vs. CPU performance of an MD5 calculation for varying

block sizes. The GPU numbers presented in this plot represent the best measured

for a block size varying the number of threads and the size of the overlap of the

concurrent copy down to the card and computation. Also, these GPU numbers

include the time to copy data down to the GPU as well as the time to copy computed
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Figure 7.8: A comparison of MD5 hashing rates for CPU and GPU. Note, the GPU
rate includes both the copying of data to be checksummed down to the cards local
memory as well as the copying of the computed keys from the card to host memory.
The GPU data is the best recorded for a block size varying the number of threads
and the amount of overlap in copy and computation. The CPU numbers are using
the Libgcrypt [13] MD5 hashing algorithm.

keys to host memory. With a per-process hashing rate between 600 and 4000 MB/sec

for the Fermi GPU card, the GPU-based data rates greatly exceed the per-process

commit rate to stable storage for many large-scale systems.

7.5.5 SHA256

Figure 7.9 compares GPU vs CPU performance of an SHA256 calculation for varying

block sizes. The GPU numbers presented in this plot represent the best measured

for a block size varying the number of threads and the size of the overlap of the

concurrent copy down to the card and computation. As before, these GPU numbers
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Figure 7.9: A comparison of SHA256 hashing rates for CPU and GPU. Note, the
GPU rate includes both the copying of data to be checksummed down to the cards
local memory as well as the copying of the computed keys from the card to host
memory. The GPU data is the best recorded for a block size varying the number of
threads and the amount of overlap in copy and computation. The CPU numbers are
using the Libgcrypt [13] SHA256 hashing algorithm.

include the time to copy data down to the GPU as well as the time to copy computed

keys to host memory. With a per-process hashing rate between 1400 and 2200

MB/sec for the Fermi GPU card, the GPU-based data rates exceed the per-process

commit rate to stable storage for many large-scale systems.
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Application compression GPU Break-even βckpt CPU Break-even βckpt

(%) (MB/sec) (MB/sec)

CTH 83 3320 415
SAGE 35 1400 175

LAMMPS 2.4 92 12

Table 7.2: Per-process checkpoint commit “break-even” bandwidth CPU/GPU
comparison calculated using Equation 7.3 for the applications CTH, SAGE, and
LAMMPS. Compression values for each of the applications are from Section 7.4.2
and a βhash value equal to 4.0GB/sec from the GPU MD5 hash as illustrated in Sec-
tion 7.5, and a βhash value equal to 500MB/sec from the CPU ADLER32 hash.

7.6 Viability of Hash-Based Incremental Check-

pointing

In this section we outline the viability of this hash-based technique for next generation

exascale systems. Table 7.2 summarizes the compression results shown previously in

this chapter. For CTH, SAGE, and LAMMPS we use Equation 7.3, the compression

values measured in Section 7.4.2. In addition we use the maximum hash computation

rate (βhash) measure in Section 7.5. These values are 4.0 GB/sec from an MD5 hash

on a Fermi GPU and a value of 500 MB/sec for the CPU hashing algorithm.

Table 7.2 shows the per-process break-even checkpoint commit bandwidths for

the measured applications using the maximum hashing rate and compression per-

centages. If a proposed exascale-class machine has a per-process checkpoint commit

speed is less then this break-even value, then the hash-based approach has a lower

overhead than a strictly page-based approach.

The per-process break-even CPU results in this table vary from 415 to 12 MB/sec,

with the greatest per-process bandwidth being for CTH which has the greatest com-

pression and lowest for LAMMPS. For the GPU, if a machine has a per-process
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checkpoint commit speed is less then 3.32 GB/sec then the hash-based approach

will have a lower overhead than the strictly page-based approach. Even with many

optimizations and high performance parallel file systems that stripe large writes si-

multaneously across many disks and file servers, it is difficult to achieve per-process

disk commit bandwidth of this magnitude for many future large-scale systems as

these values for the GPU are larger than what we even see today.

For illustration, in Figure 7.10 we show the per-socket checkpoint bandwidth for a

range of aggregate checkpoint commit bandwidths likely to be seen in future systems.

The shaded region in this figure corresponds to possible socket count for an exascale

class machine [12]. A per-process commit rate greater than this 3.32 GB/sec value

and the page based approach will have lower overheads for the GPU. For the CPU

hashing, the break-even point is much lower with a value of 415 MB/sec. These

figures also have the break-even bandwidths for the compression values measured for

SAGE and LAMMPS.

For SAGE with the GPU numbers, from Table 7.2 we see that the break-even

checkpoint commit bandwidth is 1.4 GB/sec, much greater than the 175 MB/sec for

CPU hashing. This per-process break-even commit bandwidth is greater than what

is expected in future exascale systems, again can be seen in Figure 7.10. Lastly, for

LAMMPS, the compression value is much smaller than the other two applications at

2.4%, therefore the per-process checkpoint commit breakpoint speed is much lower

at 92 MB/sec; a value more easily reached by future parallel I/O systems. At the

CPU hashing speeds the break-even bandwidth is 12MB/sec. See Figure 7.10 for a

comparison of the CPU/GPU data.
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Figure 7.10: Per-socket commit bandwidth assuming coordinated checkpointing for
a number of possible aggregate I/O bandwidths. The shaded regions correspond
to the break-even checkpoint commit bandwidths from Table 7.2 for possible socket
counts and compression values from Equation 7.3 for an exascale class machine [12]
using GPU and CPU hashing.
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7.7 Summary

In this chapter, we introduce a simple model to illustrate the viability of hash-based

incremental checkpointing. In addition, we introduce libhashckpt, an incremen-

tal checkpointing library that uses hashing to save only the changed state of an

application in a checkpoint interval. To significantly decrease the overhead of the

hash calculation, libhashckpt can utilize GPUs. Using this library, we compare

the checkpoint file sizes of this hash-based method with that of a standard page-

protection mechanism and a highly optimized application-specific mechanism. Using

real capability HPC workloads we show that, for a certain class of applications, this

hash-based method can reduce the checkpoint file size to be around 15% of that of a

page-based approach. In addition, this method can create checkpoint files which are

only 35% larger than that of a manually-coded, application-specific method. Finally,

we use the model and results from real applications to outline the viability of this

technique for next-generation exascale systems. With this simple model we show the

viability of this hash-based incremental checkpointing using both the GPU and CPU

to compute the hashes. More specifically, we show that at GPU hashing speeds this

technique has significantly lower overheads in much of the exascale design space than

a page-based checkpointing approach.
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Conclusion

Our goal in this work was to research methods to keep traditional checkpoint/restart

viable on exascale class systems; those systems capable of performing 1018 (or one

quintillion) operations per second which are expected to be delivered in 2018−2020.

Our fundamental approach for achieving this goal was to keep checkpoint/restart

viable while not requiring tremendous increases in hardware reliability rates and/or

stable storage commit rates. Using this approach, we examined two methods to

decrease checkpoint overheads, state-machine replication and hash-based incremen-

tal checkpointing using GPUs. These two mechanisms dramatically increase the

checkpoint interval and greatly decrease checkpoint commit times, respectively. In

this final chapter, we summarize the contributions of this work and discuss possible

directions for future work.

8.1 Contributions

In this dissertation, we show that replication and incremental checkpointing can

extend the viability of traditional checkpoint/restart to exascale-class systems. The
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major contributions of this work are:

1. A Model for the Benefits of Replication.

We developed a model for state-machine replication combining both Daly’s

model for optimal checkpointing and the birthday problem. We also outlined a

number of approximations and extensions to this common problem from prob-

ability theory. With this combined model, we formulated the expected number

of faults a replicated system can sustain, illustrating the significant impact

replication has on application mean time to interrupt and efficiency. Also we

outlined a coordinated checkpoint simulator and validated this model using this

simulator. These results all showed that this replication technique has a higher

efficiency in comparison to traditional checkpoint/restart at the socket counts

expected in exascale systems assuming no run time overheads. In addition, us-

ing this simulator we show that for more realistic distributions, the overheads

of checkpoint/restart are more dramatic than seen with the commonly used

exponential model.

2. rMPI: a Portable and Transparent Replication Library for MPI.

We developed a portable, transparent replication library called rMPI. This li-

brary utilizes the MPI profiling layer to enable transparent redundant com-

putation for MPI applications. In this work we described the design of this

library, detailing the techniques that are necessary to maintain MPI semantics,

especially managing message ordering and active replica consistency protocols.

Additionally, we presented the run time protocol overheads for rMPI, showing

that while the protocol overheads are quite high for a number of communica-

tion micro-benchmarks, there is a low overhead protocol choice for each of the

tested, real-world HPC capability workloads, with that choice being dependent

on the computational pattern of the application. We incorporate this overhead
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in our replication model to more accurately examine the cost associated with

state machine replication.

3. Analysis of Checkpoint/Restart Viability for Exascale Scale Systems.

We showed the viability of state-machine replication as the primary exascale

fault tolerance mechanism, with checkpoint/restart providing secondary fault

tolerance when necessary. Using the aforementioned model we show that this

fault-tolerance mechanism’s “break-even” point, the point at which the nodes

hours (for efficiency) used for this method is less than the projected sizes of

next-generation exascale systems. A combination of modeling, empirical evalu-

ation, and simulation were used to study the various costs and benefits of state

machine replication over a wide range of potential system parameters. This

included both the hardware and software costs of state machine replication for

MPI applications, and covered different failure distributions, system mean time

to interrupt ranges, and I/O speeds.

Our results show that a state machine replication approach to exascale re-

silience outperforms traditional checkpoint/restart approaches for a wide range

of the exascale system design space, though not the entire design space. In par-

ticular, state machine replication is a particularly viable technique for the large

socket counts and limited I/O bandwidths frequently anticipated at exascale.

However, replication-based approaches are less relevant for designs that have

per-socket MTBFs of 50 years or more, less than 50,000 sockets, and checkpoint

bandwidths of 30 terabytes per second.

Outside of its performance benefits, using replication as the primary exascale

fault tolerance methods provides a number of other advantages. First among

these is that it can be used to detect and aid in the recovery from faults that

corrupt system state instead of crashing the system, sometimes referred to un-

der the banner of silent errors. Checkpoint-based approaches, on the other
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hand, potentially preserve such errors. In addition, while the extra hardware

nodes needed to support replication-based approaches can also be used to in-

crease the capacity of exascale systems when it runs more but smaller (e.g.

1-10 petaflop-scale) jobs.

4. Libhashckpt: a Hash-based Incremental-Checkpointing Library using

GPU Accelerators

We developed a hybrid incremental checkpointing library that uses both OS

page protection mechanisms and a hash mechanism to determine the location

within a page that has changed, and therefore ensure only changed application

state is saved in a checkpoint interval. To significantly decrease the overhead of

the hash calculation, libhashckpt can utilize GPUs. To illustrate the possible

benefits of this technique we created a simple model. Using this model, we show

that the viability of this technique is dependent on a platforms per-process

checkpoint commit rate (βckpt) and hash rate (βhash) to the percent reduction

in state size of the hash based approach (compression). Using this library,

we compare the checkpoint file sizes of this hash-based method with that of

a standard page-protection mechanism and a highly optimized application-

specific mechanism. Using real capability HPC workloads we show that, for a

certain class of applications, this hash-based method can reduce the checkpoint

file size to be around 15% of that of a page-based approach. In addition, this

method can create checkpoint files which are only 35% larger than that of a

manually-coded, application-specific method. Finally, we use the model and

results from real applications to outline the viability of this technique for next-

generation exascale systems. With this model, we showed that this approach

has significant performance advantages for proposed exascale architectures at

GPU hash rates. At measured CPU hashing rates, this approach has a more

limited viability within the exascale design space.
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8.2 Future Directions

While the research described outlines most of the potential costs and benefits of

these techniques, there are several avenues for future work. In terms of state machine

replication, more work is needed quantifying the software costs of using replication to

detect silent errors. While such techniques are well known in other communities, it is

unclear what their cost would be for HPC applications; the quantitative results in this

paper do not attempt to measure these costs and focus only on using replication to

mask the pressing issue of frequent crash failures on exascale systems. In addition,

more detailed studies of the scaling, benefits, and hardware costs of the various

alternative methods to scaling exascale fault tolerance described in Chapter 2 are

needed. While state machine replication appears viable at exascale, other approaches

may still be superior; careful investigation of such approaches is needed to understand

their comparative costs and benefits. Lastly, we are investigating an alternative

method to enable redundant computing that has a lower resource overhead then

what is presented here. Rather than having a replica specific to a particular rank,

we are looking into methods that would aggregate a number of replicated ranks onto

one node and spread state throughout all of these aggregate replicas in a job. This

will allow an aggregate replica, on demand, to replace a certain rank and could

possibly allow the application to avoid checkpointing altogether.

In terms of the hash-based incremental checkpointing, more work is needed in or-

der to evaluate the merit of this technique to a broader set of large-scale applications.

In addition, we propose further research investigating other hash and checksum al-

gorithms. For this study we used a range of hashes; from cryptographically secure

hash algorithms to such simpler checksum algorithms. Neither of these algorithms

may be ideal for determining block changes. Ideally, we want the collision resistance

of the cryptographic hashes, yet not have the other cryptographic guarantees. These

ideal hashes should may have significantly lower overheads. In addition, much work
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could be done in improving the performance of the GPU hash algorithms. While

these CUDA implementation perform well in comparison to the CPU methods, they

may not be fully utilizing the full potential of the GPU. Lastly, we need to com-

pare this hash-based method with other checkpoint optimization techniques, such as

compiler-assisted incremental checkpoint methods.
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Appendix A

rMPI Micro-benchmark

Performance

In this chapter, we present the performance impact of our state machine replication

protocols for MPI Allreduce(), MPI Reduce(), MPI Bcast(), MPI Barrier(), and MPI -

Alltoall(). Each of these micro-benchmarks are from the OSU MPI benchmark

suite(OMB) [183]. For each of the micro-benchmarks we use the rMPI library de-

scribed in Chapter 4. For each of the tests we present mirror and parallel results

described in Section 4.2.1. In addition, we use the replica placement options de-

scribed in Section 5.1.1, showing results for forward, reverse, and shuffle options.

Similar to the results presented in Chapter 4, we ran multiple tests with applica-

tions on the Cray Red Storm system at Sandia National Laboratories compiled with

both rMPI and the original unmodified Cray MPI library. Red Storm is a XT-3/4

series machine consisting of over 13,000 nodes, with each compute node containing

a 2.2 GHz quad-core AMD Opteron processor and 8 GB of main memory. Addi-

tionally, each node contains a Cray SeaStar [163] network interface and high-speed

router. The SeaStar is connected to the Opteron via a HyperTransport link. The

current generation SeaStar is capable of sustaining a peak unidirectional injection
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bandwidth of more than 2 GB/s and a peak unidirectional link bandwidth of more

than 3 GB/s. Lastly, to ensure leader and replica are on separate physical nodes,

and to avoid memory and bandwidth bottlenecks on the nodes themselves, we only

used one CPU on each node.

A.1 MPI Allreduce()

Figure A.1 and Figure A.2 show the percent slowdown of the MPI Allreduce()micro-

benchmark due to rMPI’s mirror and parallel consistency protocols, respectively. In

both of these figures we also show the impact of the replica placement protocols.

Since these tests were run on the Red Storm platform which has a 3-D torus network

topology, there is typically little difference between placement options. In general

we see that for this micro-benchmark, the parallel protocol has lower overheads than

mirror.

A.2 MPI Reduce()

Figure A.3 and Figure A.4 show the slowdown of the MPI Reduce() micro-benchmark

due to rMPI’s mirror and parallel consistency protocols, respectively. In both of these

figures we also show the impact of the replica placement protocols. Since these tests

were run on the Red Storm platform which has a 3-D torus network topology, there

is typically little difference between placement options. In general we see that for

this micro-benchmark, the parallel protocol has lower overheads than mirror.

127



Appendix A. rMPI Micro-benchmark Performance

 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure A.1: MPI Allreduce() micro-benchmark percent slowdown in comparison to
the native MPI performance for the mirror protocol.
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Figure A.2: MPI Allreduce() micro-benchmark percent slowdown in comparison to
the native MPI performance for the parallel protocol.
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Figure A.3: MPI Reduce() micro-benchmark percent slowdown in comparison to the
native MPI performance for the mirror protocol.
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Figure A.4: MPI Reduce() micro-benchmark percent slowdown in comparison to the
native MPI performance for the parallel protocol.
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A.3 MPI Bcast()

Figure A.5 and Figure A.6 show the slowdown of the MPI Bcast() micro-benchmark

due to rMPI’s mirror and parallel consistency protocols, respectively. In both of these

figures we also show the impact of the replica placement protocols. Since these tests

were run on the Red Storm platform which has a 3-D torus network topology, there

is typically little difference between placement options. In general we see that for

this micro-benchmark, the parallel protocol has lower overheads than mirror.

A.4 MPI Alltoall()

Figure A.7 shows the slowdown of the MPI Alltoall() micro-benchmark due to

rMPI’s parallel consistency protocols. rMPI mirror results are not show due to limited

system time on Red Storm. In this figure we show the impact of the replica place-

ment protocols. Since these tests were run on the Red Storm platform which has

a 3-D torus network topology, there is typically little difference between placement

options.

A.5 MPI Barrier()

Figure A.8 shows the slowdown of the MPI Barrier()micro-benchmark due to rMPI’s

mirror and parallel consistency protocols. In this figure we also show the impact

of the replica placement protocols. Since these tests were run on the Red Storm

platform which has a 3-D torus network topology, there is typically little difference

between placement options. In general we see that for this micro-benchmark, the

parallel protocol has lower overheads than mirror.
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Figure A.5: MPI Bcast() micro-benchmark percent slowdown in comparison to the
native MPI performance for the mirror protocol.
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Figure A.6: MPI Bcast() micro-benchmark percent slowdown in comparison to the
native MPI performance for the parallel protocol.
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Figure A.7: MPI Alltoall() micro-benchmark percent slowdown in comparison to
the native MPI performance for the parallel protocol.
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Figure A.8: MPI Barrier() micro-benchmark percent slowdown in comparison to the
native MPI performance for the parallel and mirror protocols.
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[34] F. C. Gärtner, “Fundamentals of distributed computing in asynchronous envi-
ronments,” ACM Comput. Surv., vol. 31, no. 1, pp. 1–26, 1999.

[35] P. Jalote, Fault Tolerance in Distributed Systems. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1994.

[36] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, pp. 56–78, February 1991. [Online]. Available: http:
//doi.acm.org/10.1145/102792.102801

[37] F. B. Schneider, What good are models and what models are good? New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 1993, pp. 17–26.
[Online]. Available: http://portal.acm.org/citation.cfm?id=302430.302432

[38] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, pp. 382–401, July 1982. [Online].
Available: http://doi.acm.org/10.1145/357172.357176

[39] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden, “Tolerating
byzantine faults in transaction processing systems using commit barrier
scheduling,” in Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, ser. SOSP ’07. New York, NY, USA: ACM, 2007,
pp. 59–72. [Online]. Available: http://doi.acm.org/10.1145/1294261.1294268

[40] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of twenty-first

140



References

ACM SIGOPS symposium on Operating systems principles, ser. SOSP
’07. New York, NY, USA: ACM, 2007, pp. 45–58. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294267

[41] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput. Surv.,
vol. 34, no. 3, pp. 375–408, 2002.

[42] J.-M. Hélary, R. H. B. Netzer, and M. Raynal, “Consistency issues in
distributed checkpoints,” IEEE Trans. Softw. Eng., vol. 25, pp. 274–281,
March 1999. [Online]. Available: http://portal.acm.org/citation.cfm?id=
630823.631237

[43] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementation
of zap: a system for migrating computing environments,” SIGOPS Oper.
Syst. Rev., vol. 36, pp. 361–376, December 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844162

[44] V. C. Zandy and B. P. Miller, “Reliable network connections,” in Proceedings
of the 8th annual international conference on Mobile computing and networking,
ser. MobiCom ’02. New York, NY, USA: ACM, 2002, pp. 95–106. [Online].
Available: http://doi.acm.org/10.1145/570645.570657

[45] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “C3: A system for
automating application-level checkpointing of MPI programs,” in LCPC, ser.
Lecture Notes in Computer Science, L. Rauchwerger, Ed., vol. 2958. Springer,
2003, pp. 357–373.

[46] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
pp. 63–75, February 1985. [Online]. Available: http://doi.acm.org/10.1145/
214451.214456

[47] B. Randell, “System structure for software fault tolerance,” in Proceedings
of the international conference on Reliable software. New York, NY, USA:
ACM, 1975, pp. 437–449. [Online]. Available: http://doi.acm.org/10.1145/
800027.808467

[48] Y. Tamir and C. H. Squin, “Error recovery in multicomputers using global
checkpoints,” in In 1984 International Conference on Parallel Processing, 1984,
pp. 32–41.

141



References

[49] J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic check-
point/restart in open MPI,” in HPDC ’09: Proceedings of the 18th ACM in-
ternational symposium on High performance distributed computing, 2009, pp.
49–58.

[50] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr) for
linux clusters,” Journal of Physics: Conference Series, vol. 46, no. 1, p. 494,
2006. [Online]. Available: http://stacks.iop.org/1742-6596/46/i=1/a=067

[51] T. H. Lai and T. H. Yang, “On distributed snapshots,” Inf. Process.
Lett., vol. 25, pp. 153–158, May 1987. [Online]. Available: http:
//dx.doi.org/10.1016/0020-0190(87)90125-6

[52] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and
F. Cappello, “Blocking vs. non-blocking coordinated checkpointing for large-
scale fault tolerant mpi ,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, 2006, p. 127.

[53] F. Cristian and F. Jahanian, “A timestamp-based checkpointing protocol for
long-lived distributed computations,” in SRDS, 1991, pp. 12–20.

[54] Z. Tong, R. Y. Kain, and W. T. Tsai, “Rollback recovery in
distributed systems using loosely synchronized clocks,” IEEE Trans. Parallel
Distrib. Syst., vol. 3, pp. 246–251, March 1992. [Online]. Available:
http://dx.doi.org/10.1109/71.127264

[55] L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems.” ACM Trans. Program. Lang. Syst., vol. 6, pp. 254–280, April 1984.
[Online]. Available: http://doi.acm.org/10.1145/2993.2994

[56] J. T. Daly, “A higher order estimate of the optimum checkpoint interval for
restart dumps,” Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–312, 2006.

[57] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S. L.
Scott, “An optimal checkpoint/restart model for a large scale high performance
computing system,” in IPDPS. IEEE, 2008, pp. 1–9.

[58] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent, “A flexible
checkpoint/restart model in distributed systems,” in Proceedings of the 8th
international conference on Parallel processing and applied mathematics: Part
I, ser. PPAM’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 206–215.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1882792.1882818

142



References

[59] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, pp. 530–531, September 1974. [Online].
Available: http://doi.acm.org/10.1145/361147.361115

[60] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun, and
S. L. Scott, “Reliability-aware approach: An incremental checkpoint/restart
model in hpc environments,” in Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 783–788. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1371605.1372487

[61] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and
F. Magniette, “MPICH-V2: a fault tolerant MPI for volatile nodes based on
pessimistic sender based message logging,” in Proceedings of the ACM/IEEE
International Conference on High Performance Computing and Networking,
November 2003.

[62] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The design and im-
plementation of checkpoint/restart process fault tolerance for open MPI,” in
Proceedings of the IEEE International Parallel and Distributed Processing Sym-
posium, March 2007.

[63] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill, “Re-
cent advances in checkpoint/recovery systems,” Apr. 2006.

[64] T.-C. Chiueh and P. Deng, “Evaluation of checkpoint mechanisms for mas-
sively parallel machines.” in Annual Symposium on Fault Tolerant Computing.
Sendai, Japan: IEEE Computer Society Press, June 1996, pp. 370–379.

[65] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale systems: a
look into the future of practical rollback-recovery,” Dependable and Secure
Computing, IEEE Transactions on, vol. 1, no. 2, pp. 97–108, Apr. 2004.

[66] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “Dejavu: Transparent user-
level checkpointing, migration, and recovery for distributed systems,” in Inter-
national Parallel and Distributed Processing Symposium/International Parallel
Processing Symposium, 2007, pp. 1–10.

[67] G. Bronevetsky, D. J. Marques, K. K. Pingali, R. Rugina, and S. A. McKee,
“Compiler-enhanced incremental checkpointing for openmp applications,” in
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. New York, NY, USA: ACM, 2008, pp.
275–276.

143



References

[68] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini, “Transparent,
incremental checkpointing at kernel level: a foundation for fault tolerance for
parallel computers,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, ser. SC ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 9–. [Online]. Available: http://dx.doi.org/10.1109/SC.2005.76

[69] J. C. Sancho, F. Petrini, G. Johnson, J. Fernandez, and E. Frachtenberg, “On
the feasibility of incremental checkpointing for scientific computing,” Parallel
and Distributed Processing Symposium, International, vol. 1, p. 58b, 2004.

[70] Y. Chen, J. S. Plank, and K. Li, “Clip: a checkpointing tool
for message-passing parallel programs,” in Proceedings of the 1997
ACM/IEEE conference on Supercomputing (CDROM), ser. Supercomputing
’97. New York, NY, USA: ACM, 1997, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/509593.509626

[71] K. Li, J. F. Naughton, and J. S. Plank, “Low-latency, concurrent checkpointing
for parallel programs,” IEEE Trans. Parallel Distrib. Syst., vol. 5, pp. 874–879,
August 1994. [Online]. Available: http://dx.doi.org/10.1109/71.298215

[72] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: transparent
checkpointing under unix,” in Proceedings of the USENIX 1995 Technical
Conference Proceedings, ser. TCON’95. Berkeley, CA, USA: USENIX
Association, 1995, pp. 18–18. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1267411.1267429

[73] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of
consistent checkpointing.” in 11th Symposium on Reliable Distributed Systems.
Houston, TX, USA: IEEE Computer Society Press, October 1992, pp. 39–47.

[74] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
exclusion: optimizing the performance of checkpointing systems,” Softw.
Pract. Exper., vol. 29, pp. 125–142, February 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=309087.309095

[75] S. I. Feldman and C. B. Brown, “Igor: a system for program debugging
via reversible execution,” in Proceedings of the 1988 ACM SIGPLAN
and SIGOPS workshop on Parallel and distributed debugging, ser. PADD
’88. New York, NY, USA: ACM, 1988, pp. 112–123. [Online]. Available:
http://doi.acm.org/10.1145/68210.69226

[76] J. Leon, A. L. Fisher, and P. Steenkiste, “Fail-safe PVM: A portable package
for distributed programming with transparent recovery,” Pittsburgh, PA, USA,
Tech. Rep., 1993.

144



References

[77] K. Li, J. F. Naughton, and J. S. Plank, “Real-ti concurrent checkpoint
for parallel programs,” in Proceedings of the second ACM SIGPLAN
symposium on Principles & practice of parallel programming, ser. PPOPP
’90. New York, NY, USA: ACM, 1990, pp. 79–88. [Online]. Available:
http://doi.acm.org/10.1145/99163.99173

[78] G. Stellner, “CoCheck: Checkpointing and process migration for MPI,” in
Proceedings of the 10th International Parallel Processing Symposium, ser. IPPS
’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 526–531.
[Online]. Available: http://portal.acm.org/citation.cfm?id=645606.660853

[79] V. C. Zandy, B. P. Miller, and M. Livny, “Process hijacking,”
in Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing, ser. HPDC ’99. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 32–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=822084.823234

[80] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.18

[81] B. K. Bhargava and S.-R. Lian, “Independent checkpointing and concurrent
rollback for recovery in distributed systems - an optimistic approach,” in SRDS,
1988, pp. 3–12.

[82] Y.-M. Wang, “Reducing message logging overhead for log-based recovery.” in
ISCAS’93, 1993, pp. 1925–1928.

[83] B. Randell, “System structure for software fault tolerance,” SIGPLAN
Not., vol. 10, pp. 437–449, April 1975. [Online]. Available: http:
//doi.acm.org/10.1145/390016.808467

[84] R. H. B. Netzer and J. Xu, “Necessary and sufficient conditions for consistent
global snapshots,” IEEE Trans. Parallel Distrib. Syst., vol. 6, pp. 165–169,
February 1995. [Online]. Available: http://dx.doi.org/10.1109/71.342127

[85] D. L. Russell, “State restoration in systems of communicating processes,”
IEEE Trans. Softw. Eng., vol. 6, pp. 183–194, March 1980. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1313319.1313517

145



References

[86] Y.-M. Wang, “Consistent global checkpoints that contain a given set of
local checkpoints,” IEEE Trans. Comput., vol. 46, pp. 456–468, April 1997.
[Online]. Available: http://portal.acm.org/citation.cfm?id=254340.254371

[87] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[88] D. Briatico, A. Ciuffoletti, and L. Simoncini, “A distributed domino-effect free
recovery algorithm,” in Symposium on Reliability in Distributed Software and
Database Systems, 1984, pp. 207–215.

[89] J.-M. Helary, A. Mostefaoui, and M. Raynal, “Preventing useless
checkpoints in distributed computations,” in Proceedings of the 16th
Symposium on Reliable Distributed Systems, ser. SRDS ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 183–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=829522.830921

[90] J. Ahn, “2-step algorithm for enhancing effectiveness of sender-based
message logging,” in SpringSim ’07: Proceedings of the 2007 spring
simulation multiconference, 2007, pp. 429–434. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1404748

[91] Q. Jiang and D. Manivannan, “An optimistic checkpointing and selective ap-
proach for consistent global checkpoint collection in distributed systems,” Mar.
2007.

[92] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems using
asynchronous and checkpointing,” in Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing, 1988, pp. 171–181.

[93] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the message
logging model for high performance,” Concurr. Comput. : Pract.
Exper., vol. 22, pp. 2196–2211, November 2010. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v22:16

[94] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri,
and A. Selikhov, “MPICH-V: Toward a scalable fault tolerant MPI
for volatile nodes,” in Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, ser. Supercomputing ’02. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2002, pp. 1–18. [Online]. Available:
http://portal.acm.org/citation.cfm?id=762761.762815

146



References

[95] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,” ACM
Trans. Comput. Syst., vol. 3, pp. 204–226, August 1985. [Online]. Available:
http://doi.acm.org/10.1145/3959.3962

[96] M. L. Powell and D. L. Presotto, “Publishing: a reliable broadcast
communication mechanism,” SIGOPS Oper. Syst. Rev., vol. 17, pp. 100–109,
October 1983. [Online]. Available: http://doi.acm.org/10.1145/773379.806618

[97] A. Borg, J. Baumbach, and S. Glazer, “A message system supporting fault
tolerance,” in Proceedings of the ninth ACM symposium on Operating systems
principles, ser. SOSP ’83. New York, NY, USA: ACM, 1983, pp. 90–99.
[Online]. Available: http://doi.acm.org/10.1145/800217.806617

[98] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Uncoor-
dinated checkpointing without domino effect for send-deterministic message
passing applications,” in Proceedings of the 2011 IEEE International Parallel
and Distributed Processing Symposium, May 2011.

[99] J. S. Plank, Y. B. Kim, and J. J. Dongarra, “Algorithm-based diskless check-
pointing for fault tolerant matrix operations.” in Twenty-Fifth International
Symposium on Fault-Tolerant Computing. Digest of Papers. Pasadena, CA,
USA: Los Alamitos, CA, USA : IEEE Comput. Soc. Press, 1995, June 1995,
pp. 351–360.

[100] J. S. Plank, Y. Kim, and J. J. Dongarra, “Fault-tolerant matrix operations
for networks of workstations using diskless checkpointing,” J. Parallel
Distrib. Comput., vol. 43, pp. 125–138, June 1997. [Online]. Available:
http://dx.doi.org/10.1006/jpdc.1997.1336

[101] L. M. Silva and J. G. Silva, “An experimental study about diskless checkpoint-
ing.” in 24th EUROMICRO Conference. Vasteras, Sweden: IEEE Computer
Society Press, August 1998, pp. 395 – 402.

[102] C. Engelmann and A. Geist, “A diskless checkpointing algorithm for
super-scale architectures applied to the fast fourier transform,” in
Proceedings of the 1st International Workshop on Challenges of Large
Applications in Distributed Environments, ser. CLADE ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 47–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=792760.793177

[103] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie, “Leverag-
ing 3d pcram technologies to reduce checkpoint overhead for future exascale

147



References

systems,” in SC ’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. New York, NY, USA: ACM, 2009,
pp. 1–12.

[104] M. Prvulovic, J. Torrellas, and Z. Zhang, “Revive: Cost-effective architectural
support for rollback recovery in shared-memory multiprocessors.” in ISCA’02,
2002, pp. 111–122.

[105] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
improving the availability of shared memory multiprocessors with global
checkpoint/recovery,” in Proceedings of the 29th annual international
symposium on Computer architecture, ser. ISCA ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 123–134. [Online]. Available:
http://portal.acm.org/citation.cfm?id=545215.545229
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